File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 3715 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 9 -
dc.contributor.author Ryu, Jaechan -
dc.contributor.author Jang, Haeseong -
dc.contributor.author Park, Joohyuck -
dc.contributor.author Yoo, Youngshin -
dc.contributor.author Park, Minjoon -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T20:14:45Z -
dc.date.available 2023-12-21T20:14:45Z -
dc.date.created 2018-09-18 -
dc.date.issued 2018-09 -
dc.description.abstract Aluminum-air batteries are promising candidates for next-generation high-energy-density storage, but the inherent limitations hinder their practical use. Here, we show that silver nanoparticle-mediated silver manganate nanoplates are a highly active and chemically stable catalyst for oxygen reduction in alkaline media. By means of atomic-resolved transmission electron microscopy, we find that the formation of stripe patterns on the surface of a silver manganate nanoplate originates from the zigzag atomic arrangement of silver and manganese, creating a high concentration of dislocations in the crystal lattice. This structure can provide high electrical conductivity with low electrode resistance and abundant active sites for ion adsorption. The catalyst exhibits outstanding performance in a flow-based aluminum-air battery, demonstrating high gravimetric and volumetric energy densities of similar to 2552 Wh kg(Al)(-1) and similar to 6890 Wh I-Al(-1) at 100 mA cm(-2), as well as high stability during a mechanical recharging process. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.9, pp.3715 -
dc.identifier.doi 10.1038/s41467-018-06211-3 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85053359885 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24874 -
dc.identifier.url https://www.nature.com/articles/s41467-018-06211-3 -
dc.identifier.wosid 000444494300004 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus ALKALINE-SOLUTION -
dc.subject.keywordPlus FUEL-CELLS -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus ELECTROCATALYSTS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.