File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이현욱

Lee, Hyun-Wook
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3409 -
dc.citation.number 19 -
dc.citation.startPage 3402 -
dc.citation.title CHEMSUSCHEM -
dc.citation.volume 11 -
dc.contributor.author Ahad, Syed Abdul -
dc.contributor.author Pitchai, Ragupathy -
dc.contributor.author Beyene, Anteneh Marelign -
dc.contributor.author Joo, Sang Hoon -
dc.contributor.author Kim, Do Kyung -
dc.contributor.author Lee, Hyun-Wook -
dc.date.accessioned 2023-12-21T20:10:29Z -
dc.date.available 2023-12-21T20:10:29Z -
dc.date.created 2018-09-17 -
dc.date.issued 2018-10 -
dc.description.abstract Since concentrated electrolytes have attracted great attention for the stabilization of lithium-metal anodes for lithium-ion batteries, the demonstration of a full cell with an electrolyte concentration study has become a research topic of interest. Herein, we have demonstrated a proof of concept, a lithium-polysulfide full cell battery using various lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte concentrations with glass-fiber-based composite and hard carbon as the cathode and anode, respectively. The initial capacity of the lithium-polysulfide full cell is found to be 970 mAh g(-1) at 0.1 C. The capacity is stabilized at 870 mAh g(-1) after 100 cycles with a capacity retention of 88.6%. An excellent capacity retention of approximate to 80% is achieved after long 800 cycles at 0.5 C by using full cell technology. Further, our post-mortem analysis sheds light on the difference in SEI layer formation on hard carbon anodes with changing electrolyte concentration, thereby indicating reasons for the obtainment of a high cyclic performance with 1 m LiTFSI salt electrolyte. The successful demonstration of the long cyclic performance of Li-polysulfide full cells is indeed a step towards producing high performance Li-polysulfide full cell batteries with long cycling using conventional LiTFSI salt electrolyte and commercial anode materials. -
dc.identifier.bibliographicCitation CHEMSUSCHEM, v.11, no.19, pp.3402 - 3409 -
dc.identifier.doi 10.1002/cssc.201801432 -
dc.identifier.issn 1864-5631 -
dc.identifier.scopusid 2-s2.0-85052461946 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24856 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201801432 -
dc.identifier.wosid 000446981300006 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Realizing High-Performance Li-Polysulfide Full Cells by using a Lithium Bis(trifluoromethanesulfonyl)imide Salt Electrolyte for Stable Cyclability -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Green & Sustainable Science & Technology -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor concentrated electrolyte -
dc.subject.keywordAuthor full cells -
dc.subject.keywordAuthor lithium-sulfur batteries -
dc.subject.keywordAuthor polysulfide -
dc.subject.keywordAuthor SEI layer -
dc.subject.keywordPlus SULFUR BATTERIES -
dc.subject.keywordPlus GRAPHENE OXIDE -
dc.subject.keywordPlus HOLLOW SPHERES -
dc.subject.keywordPlus HARD CARBON -
dc.subject.keywordPlus INTERPHASE -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus COMPOSITES -
dc.subject.keywordPlus HOST -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.