File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1459 -
dc.citation.number 6 -
dc.citation.startPage 1449 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 11 -
dc.contributor.author Kim, Junhyeok -
dc.contributor.author Ma, Hyunsoo -
dc.contributor.author Cha, Hyungyeon -
dc.contributor.author Lee, Hyomyung -
dc.contributor.author Sung, Jaekyung -
dc.contributor.author Seo, Minho -
dc.contributor.author Oh, Pilgun -
dc.contributor.author Park, Minjoon -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T20:40:22Z -
dc.date.available 2023-12-21T20:40:22Z -
dc.date.created 2018-07-07 -
dc.date.issued 2018-06 -
dc.description.abstract Advanced surface engineering of nickel-rich cathode materials greatly enhances their structural/thermal stability. However, their application into lithium-ion full-cells still faces challenges, such as the unstable solid electrolyte interphase (SEI) layer on the anode. Herein, we reveal that the degradation of battery cycle life is caused by the release of divalent nickel ions from the LiNi0.8Co0.1Mn0.1O2 cathode and the formation of nickel metal particles on the graphite anode surface, deteriorating the anode SEI layer and its structural integrity. On the basis of this finding, we demonstrate a stable lithium-ion battery by modifying the cathode surface by creating a nanostructured stabilizer with an epitaxial structure that enhances the morphological robustness. During cycling, the nickel defects in the cathode are significantly suppressed, preventing nickel ion crossover. In particular, the anode SEI layer maintains a uniform and dense structure, leading to outstanding cycling stability in the full-cell with a capacity retention of approximate to 86% after 400 cycles at 25 degrees C. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.11, no.6, pp.1449 - 1459 -
dc.identifier.doi 10.1039/c8ee00155c -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-85048961603 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24347 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2018/EE/C8EE00155C#!divAbstract -
dc.identifier.wosid 000435351000008 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LAYER-STRUCTURED CATHODE -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus RECHARGEABLE BATTERIES -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus LOSS SPECTROSCOPY -
dc.subject.keywordPlus GRAPHITE ANODES -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus SPINEL -
dc.subject.keywordPlus METAL -
dc.subject.keywordPlus MECHANISMS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.