File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

백정민

Baik, Jeong Min
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 9 -
dc.citation.startPage 1800816 -
dc.citation.title ADVANCED SCIENCE -
dc.citation.volume 5 -
dc.contributor.author Sanger, Amit -
dc.contributor.author Kang, Sung Bum -
dc.contributor.author Jeong, Myeong Hoon -
dc.contributor.author Im, Min Ji -
dc.contributor.author Choi, In Young -
dc.contributor.author Kim, Chan Ul -
dc.contributor.author Lee, Hyungmin -
dc.contributor.author Kwon, Yeong Min -
dc.contributor.author Baik, Jeong Min -
dc.contributor.author Jang, Ho Won -
dc.contributor.author Choi, Kyoung Jin -
dc.date.accessioned 2023-12-21T20:15:49Z -
dc.date.available 2023-12-21T20:15:49Z -
dc.date.created 2018-06-26 -
dc.date.issued 2018-09 -
dc.description.abstract Room-temperature (RT) gas sensitivity of morphology-controlled free-standing hollow aluminum-doped zinc oxide (AZO) nanofibers for NO2 gas sensors is presented. The free-standing hollow nanofibers are fabricated using a polyvinylpyrrolidone fiber template electrospun on a copper electrode frame followed by radio-frequency sputtering of an AZO thin overlayer and heat treatment at 400 degrees C to burn off the polymer template. The thickness of the AZO layer is controlled by the deposition time. The gas sensor based on the hollow nanofibers demonstrates fully recoverable n-type RT sensing of low concentrations of NO2 (0.5 ppm). A gas sensor fabricated with Al2O3-filled AZO nanofibers exhibits no gas sensitivity below 75 degrees C. The gas sensitivity of a sensor is determined by the density of molecules above the minimum energy for adsorption, collision frequency of gas molecules with the surface, and available adsorption sites. Based on finite-difference time-domain simulations, the RT sensitivity of hollow nanofiber sensors is ascribed to the ten times higher collision frequency of NO2 molecules confined inside the fiber compared to the outer surface, as well as twice the surface area of hollow nanofibers compared to the filled ones. This approach might lead to the realization of RT sensitive gas sensors with 1D nanostructures. -
dc.identifier.bibliographicCitation ADVANCED SCIENCE, v.5, no.9, pp.1800816 -
dc.identifier.doi 10.1002/advs.201800816 -
dc.identifier.issn 2198-3844 -
dc.identifier.scopusid 2-s2.0-85050811158 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24256 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201800816 -
dc.identifier.wosid 000444940600026 -
dc.language 영어 -
dc.publisher WILEY -
dc.title Morphology-Controlled Aluminum-Doped Zinc Oxide Nanofibers for Highly Sensitive NO2 Sensors with Full Recovery at Room Temperature -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor collision frequencies -
dc.subject.keywordAuthor fiber alignment -
dc.subject.keywordAuthor finite-difference time-domain simulations -
dc.subject.keywordAuthor free-standing nanofibers -
dc.subject.keywordAuthor room-temperature gas sensors -
dc.subject.keywordPlus GAS SENSORS -
dc.subject.keywordPlus ZNO NANOSTRUCTURES -
dc.subject.keywordPlus SENSING PROPERTIES -
dc.subject.keywordPlus FACILE SYNTHESIS -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus XPS -
dc.subject.keywordPlus IOT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.