BROWSE

Related Researcher

Author

Yoo, Jung-Woo
Functional Hybrid Materials and Devices Lab(FHMDL)
Research Interests
  • Transport properties, spintronics, organic/molucular magnet, electronic, and spintronics,

ITEM VIEW & DOWNLOAD

Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell

Cited 2 times inthomson ciCited 1 times inthomson ci
Title
Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell
Author
Jin, Mi-jinJo, JunhyeonNeupane, Guru P.Kim, JeongyongAn, Ki-SeokYoo, Jung-Woo
Keywords
Electrical conductivity; Electronic application; Inverted polymer solar cells; Inverted solar cells; Photovoltaic devices; Plasma-enhanced atomic layer deposition; Sequential injection; Structural and optical properties
Issue Date
201310
Publisher
AMER INST PHYSICS
Citation
AIP ADVANCES, v.3, no.10, pp.1 - 12
Abstract
We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD). The sequential injection of DEZn and O2 plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 °C to 300°C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002) direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ∼ 700 nm) in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of undoped ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.
URI
Go to Link
DOI
http://dx.doi.org/10.1063/1.4825230
ISSN
2158-3226
Appears in Collections:
MSE_Journal Papers
Files in This Item:
84891540997.pdfDownload

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU