File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films

Author(s)
Wang, BinLuo, DaLi, ZhanchengKwon, YoungwooWang, MeihuiGoo, MinJin, SunghwanHuang, MingShen, YongtaoShi, HaofeiDing, FengRuoff, Rodney S.
Issued Date
2018-07
DOI
10.1002/adma.201800888
URI
https://scholarworks.unist.ac.kr/handle/201301/24224
Fulltext
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201800888
Citation
ADVANCED MATERIALS, v.30, no.28, pp.1800888
Abstract
Camphor is used to transfer centimeter-scale ultrathin films onto custom-designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support-layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as-transferred films. Large-area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter-scale 300 nm-thick graphene oxide film specimens, much thinner than the approximate to 2 mu m minimum thickness of macroscale graphene-oxide films previously reported. Tensile tests were also done on two different types of large-area samples of adlayer free CVD-grown single-layer graphene supported by a approximate to 100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter-scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single-crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large-area graphene in a size scale relevant to many applications.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
0935-9648
Keyword (Author)
camphorgraphenemechanical testingtransferultrathin films
Keyword
SINGLE-CRYSTAL GRAPHENETHIN-FILMSPOLYCRYSTALLINE GRAPHENE2-DIMENSIONAL MATERIALSMONOLAYER GRAPHENEELASTIC PROPERTIESSTRENGTHMODULUSOXIDEFOIL

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.