File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

최경진

Choi, Kyoung Jin
Energy Conversion Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 658 -
dc.citation.startPage 649 -
dc.citation.title NANO ENERGY -
dc.citation.volume 50 -
dc.contributor.author Kang, Sung Bun -
dc.contributor.author Kwon, Ki Chang -
dc.contributor.author Choi, Kyoung Soon -
dc.contributor.author Lee, Rochelle -
dc.contributor.author Hong, Kootak -
dc.contributor.author Suh, Jun Min -
dc.contributor.author Im, Min Ji -
dc.contributor.author Sanger, Amit -
dc.contributor.author Choi, In Young -
dc.contributor.author Kim, Soo Young -
dc.contributor.author Shin, Jae Cheol -
dc.contributor.author Jang, Ho Won -
dc.contributor.author Choi, Kyoung Jin -
dc.date.accessioned 2023-12-21T20:36:31Z -
dc.date.available 2023-12-21T20:36:31Z -
dc.date.created 2018-06-14 -
dc.date.issued 2018-08 -
dc.description.abstract Two-dimensional transition-metal dichalcogenides (TMDCs) are very promising for photovoltaic (PV) applications due to their excellent light absorption properties and appropriate bandgap energy, Although multifunctional applications of TMDCs in photovoltaic devices have been achieved, the photovoltaic conversion efficiency under 1 sun is still very low with small active area because of their inexpedient high sheet resistance and limitation of synthesis techniques. In this study, we demonstrate uniform synthesis of 4-inch wafer-scale MoS2 thin films by thermal decomposition of solution precursors. The solar cells are fabricated by transferring n-MoS2 thin films on p-Si substrates to form p-n heterojunctions and then transferring Au nanomeshes prepared in a novel surface treatment as transparent top electrodes onto MoS2. The circular n-MoS2/p-Si heterojunction solar cell exhibited a power conversion efficiency of 5.96% at a diameter of 0.3 in. and proved to be easily scalable to 1-inch diameter with 5.18% efficiency. To the best of our knowledge, the solar cells of this study are the most efficient and the largest in all types of solar cells based on TMDC reported so far. Finally, based on finite difference time-domain simulation, we proposed a strategy for implementing n-MoS2/p-Si heterojunction solar cell with efficiency higher than 15% by introducing optimal doping control of n-MoS2 and efficient anti-reflection layers. -
dc.identifier.bibliographicCitation NANO ENERGY, v.50, pp.649 - 658 -
dc.identifier.doi 10.1016/j.nanoen.2018.06.014 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-85048331369 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24208 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2211285518304105 -
dc.identifier.wosid 000438076200075 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Two-dimensional transition-metal dichalcogenides -
dc.subject.keywordAuthor Transparent electrodes -
dc.subject.keywordAuthor Heterojunction -
dc.subject.keywordAuthor Large area synthesis -
dc.subject.keywordPlus CHEMICAL-VAPOR-DEPOSITION -
dc.subject.keywordPlus LAYER MOS2 -
dc.subject.keywordPlus 2-DIMENSIONAL MATERIALS -
dc.subject.keywordPlus MONOLAYER MOS2 -
dc.subject.keywordPlus SINGLE-LAYER -
dc.subject.keywordPlus THIN-FILM -
dc.subject.keywordPlus HETEROSTRUCTURES -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus SUBSTRATE -
dc.subject.keywordPlus NANOWIRES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.