BROWSE

Related Researcher

Author

Joo, Sang Hoon
Nanomaterials & Catalysis Lab
Research Interests
  • Catalyst, energy conversion, fuel cells, electrolyzer, ORR, HER, OER

ITEM VIEW & DOWNLOAD

Vertex-Reinforced PtCuCo Ternary Nanoframes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction and the Methanol Oxidation Reaction

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Vertex-Reinforced PtCuCo Ternary Nanoframes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction and the Methanol Oxidation Reaction
Author
Kwon, TaehyunJun, MinkiKim, Ho YoungOh, AramPark, JongsikBaik, HionsuckJoo, Sang HoonLee, Kwangyeol
Keywords
fuel cell electrocatalysts;  nanoframes;  platinum;  stability;  ternary alloys
Issue Date
201803
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED FUNCTIONAL MATERIALS, v.28, no.13, pp.1706440 -
Abstract
Noble metal binary alloy nanoframes have emerged as a new class of fuel cell electrocatalysts because of their intrinsic high catalytic surface area and accompanied high catalytic activity. However, their inferior structural and compositional stability during catalysis pose as formidable huddles to their practical applications. Herein, it is reported that introduction of an additional component to the binary catalytic system may serve as a simple and effective means of enhancing the structural and compositional stability of nanoframe-based electrocatalysts. It is demonstrated that in situ doping of Co to the PtCu alloy nanoframe yields a ternary PtCuCo rhombic dodecahedral nanoframe (Co-PtCu RNF) with a reinforced vertex structure. Co-PtCu RNF exhibits superior electrocatalytic activity and durability for the oxygen reduction reaction to those of PtCu rhombic dodecahedral nanoframe (PtCu RNF) and Pt/C catalysts, due to its ternary composition and vertex-strengthened frame structure. Furthermore, Co-PtCu RNF shows enhanced activity for the methanol oxidation reaction as compared to PtCu RNF and Pt/C.
URI
Go to Link
DOI
http://dx.doi.org/10.1002/adfm.201706440
ISSN
1616-301X
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU