BROWSE

Related Researcher

Author

Park, Hyesung
Sustainable Energy, Low-Dimensional Materials & Functional Devices Lab
Research Interests
  • Nano materials, renewable energy, optoelectronic devices

ITEM VIEW & DOWNLOAD

Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles
Author
Jung, SeungonLee, JunghyunSeo, JihyungKim, UngsooChoi, YunseongPark, Hyesung
Keywords
Annealing-free process; flexibility; graphene electrode; organic solar cells; zinc oxide nanoparticle
Issue Date
201802
Publisher
AMER CHEMICAL SOC
Citation
NANO LETTERS, v.18, no.2, pp.1337 - 1343
Abstract
An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.
URI
Go to Link
DOI
http://dx.doi.org/10.1021/acs.nanolett.7b05026
ISSN
1530-6984
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU