BROWSE

Related Researcher

Author

Park, Jang-Ung
Flexible Nano-electronics & Biotechnology Lab
Research Interests
  • Wireless wearable electronics, flexible electronics, printed electronics, nano-bio interfaces

ITEM VIEW & DOWNLOAD

Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires
Author
Kim, So-YunKim, JooheeCheong, Woon HyungLee, In JunLee, HujoongIm, Hyeon-GyunKong, HoyoulBae, Byeong-SooPark, Jang-Ung
Keywords
Transparent; Flexible electronics; Wireless sensor; Alcohol sensor; Metal oxide; Metal nanoparticles
Issue Date
201804
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.259, no., pp.825 - 832
Abstract
An unconventional method is developed to fabricate flexible and transparent sensors for real-time, wireless sensing of alcohol vapors using hybrid nanostructures of indium oxide and Pt nanoparticles (as an active channel) with random networks of metal nanowires (as electrodes and antennas). The hybrid structures of indium oxide and Pt nanoparticles present high response and selectivity for ethanol vapor sensing with detecting the blood alcohol concentration range corresponding to the license suspension or revocation in the Road Traffic Act of many countries (blood alcohol concentration 200 ppm). The integration of a Bluetooth system or an inductive antenna enables wireless operations of the alcohol sensor using smartphones for applications as wearable and hands-free devices with flexible, transparent film geometries. Furthermore, these sensor systems exhibit outstanding thermal reliabilities for their stable operations over wide temperature ranges between −40 °C and 125 °C, which can extend their practical use for automobile electronics. Such devices can be transferable onto diverse nonplanar surfaces including steering wheels and curved glasses of phones, which suggests substantial promise for their applications in next-generation automobile or wearable electronics.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.snb.2017.12.139
ISSN
0925-4005
Appears in Collections:
MSE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU