File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

강석주

Kang, Seok Ju
Smart Materials for Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Superoxide stability for reversible Na-O2 electrochemistry

Author(s)
Dilimon, V.S.Hwang, ChihyunCho, Yoon-GyoYang, JuchanLim, Hee-DaeKang, KisukKang, Seok JuSong, Hyun-Kon
Issued Date
2017-12
DOI
10.1038/s41598-017-17745-9
URI
https://scholarworks.unist.ac.kr/handle/201301/23188
Fulltext
https://www.nature.com/articles/s41598-017-17745-9
Citation
SCIENTIFIC REPORTS, v.7, pp.17635
Abstract
Stabilizing superoxide (O-2(-)) is one of the key issues of sodium-air batteries because the superoxide-based discharge product (NaO2) is more reversibly oxidized to oxygen when compared with peroxide (O-2(2-)) and oxide (O2-). Reversibly outstanding performances of sodium-oxygen batteries have been realized with the superoxide discharge product (NaO2) even if sodium peroxide (Na2O2) have been also known as the discharge products. Here we report that the Lewis basicity of anions of sodium salts as well as solvent molecules, both quantitatively represented by donor numbers (DNs), determines the superoxide stability and resultantly the reversibility of sodium-oxygen batteries. A DN map of superoxide stability was presented as a selection guide of salt/solvent pair. Based on sodium triflate (CF3SO3-)/dimethyl sulfoxide (DMSO) as a high-DN-pair electrolyte system, sodium ion oxygen batteries were constructed. Pre-sodiated antimony (Sb) was used as an anode during discharge instead of sodium metal because DMSO is reacted with the metal. The superoxide stability supported by the high DN anion/solvent pair (CF3SO3-/DMSO) allowed more reversible operation of the sodium ion oxygen batteries.
Publisher
NATURE PUBLISHING GROUP
ISSN
2045-2322
Keyword
SODIUM-OXYGEN BATTERIESLITHIUM-AIR BATTERIESDIMETHYL-SULFOXIDEIMPEDANCE SPECTROSCOPYNONAQUEOUS ELECTROLYTELI-O-2 BATTERIESNAO2 BATTERYPERFORMANCEREDUCTIONNANOSHEETS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.