BROWSE

Related Researcher

Author

Kim, Guntae
GUNS Lab
Research Interests
  • Solid Oxide Fuel Cells (SOFCs)& SOE, metal-air batteries, ceramic membranes, PEMFC

ITEM VIEW & DOWNLOAD

All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility
Author
Kim, Ju-MyungKim, Jeong A.Kim, Seung-HyeokUhm, In SungKang, Sung JoonKim, GuntaeLee Sun-YoungYeon, Sun-HwaLee, Sang-Young
Keywords
heteronanomat skeletons; lithium-ion batteries; mechanical fl exibility; polymeric nanofi ber/carbon nanotube; ultrahigh energy density
Issue Date
201711
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED ENERGY MATERIALS, v.7, no.22, pp.1701099 -
Abstract
The ongoing surge in demand for high-energy/flexible rechargeable batteries relentlessly drives technological innovations in cell architecture as well as electrochemically active materials. Here, a new class of all-nanomat lithium-ion batteries (LIBs) based on 1D building element-interweaved heteronanomat skeletons is demonstrated. Among various electrode materials, silicon (Si, for anode) and overlithiated layered oxide (OLO, for cathode) materials are chosen as model systems to explore feasibility of this new cell architecture and achieve unprecedented cell capacity. Nanomat electrodes, which are completely different from conventional slurry-cast electrodes, are fabricated through concurrent electrospinning (for polymeric nanofibers) and electrospraying (for electrode materials/carbon nanotubes (CNTs)). Si (or rambutan-shaped OLO/CNT composite) powders are compactly embedded in the spatially interweaved polymeric nanofiber/CNT heteromat skeletons that play a crucial role in constructing 3D-bicontinuous ion/electron transport pathways and allow for removal of metallic foil current collectors. The nanomat Si anodes and nanomat OLO cathodes are assembled with nanomat Al2O3 separators, leading to the fabrication of all-nanomat LIB full cells. Driven by the aforementioned structural/chemical uniqueness, the all-nanomat full cell shows exceptional improvement in electrochemical performance (notably, cell-based gravimetric energy density = 479 W h kgCell −1) and also mechanical deformability, which lie far beyond those achievable with conventional LIB technologies.
URI
Go to Link
DOI
http://dx.doi.org/10.1002/aenm.201701099
ISSN
1614-6832
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU