File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박영빈

Park, Young-Bin
Functional Intelligent Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 239 -
dc.citation.startPage 232 -
dc.citation.title COMPOSITES PART B-ENGINEERING -
dc.citation.volume 133 -
dc.contributor.author Sung, Dae Han -
dc.contributor.author Kim, Myungsoo -
dc.contributor.author Park, Young-Bin -
dc.date.accessioned 2023-12-21T21:16:17Z -
dc.date.available 2023-12-21T21:16:17Z -
dc.date.created 2017-11-27 -
dc.date.issued 2018-01 -
dc.description.abstract An effective analytical modeling method to predict the thermal conductivity of a multiscale hybrid composite, consisting of nano-sized filler, micron-scale continuous fiber and polymer matrix, has been proposed. The method combines the modified Mori-Tanaka method and woven fiber composite modeling, which are used to predict the thermal conductivities of carbon nanotube(CNT)/polymer composites and CNT/woven fiber/polymer multiscale composites, respectively. The thermal-electrical circuit analogy was applied to the unit cell of a multiscale woven fiber composite, which allowed predictions of conductivities in both in-plane and through-thickness directions. The experimental validations on woven fiber composites and multiscale composites revealed that thermal conductivity predictions based on the proposed modeling approaches agreed well with the experimental results, taking into account the effects of CNT content, fiber volume fraction, constituent conductivities, and fiber undulation. -
dc.identifier.bibliographicCitation COMPOSITES PART B-ENGINEERING, v.133, pp.232 - 239 -
dc.identifier.doi 10.1016/j.compositesb.2017.09.032 -
dc.identifier.issn 1359-8368 -
dc.identifier.scopusid 2-s2.0-85029812699 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22991 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S1359836817308636?via%3Dihub -
dc.identifier.wosid 000414620500024 -
dc.language 영어 -
dc.publisher ELSEVIER SCI LTD -
dc.title Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Engineering, Multidisciplinary; Materials Science, Composites -
dc.relation.journalResearchArea Engineering; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Carbon nanotubes -
dc.subject.keywordAuthor Hybrid composites -
dc.subject.keywordAuthor Polymer-matrix composites (PMCs) -
dc.subject.keywordAuthor Thermal properties -
dc.subject.keywordAuthor Modeling -
dc.subject.keywordPlus WOVEN-FABRIC COMPOSITES -
dc.subject.keywordPlus EPOXY COMPOSITES -
dc.subject.keywordPlus THERMOELECTRIC PROPERTIES -
dc.subject.keywordPlus POLYESTER COMPOSITES -
dc.subject.keywordPlus POLYIMIDE COMPOSITES -
dc.subject.keywordPlus THEORETICAL APPROACH -
dc.subject.keywordPlus MATRIX COMPOSITES -
dc.subject.keywordPlus SURFACE-TREATMENT -
dc.subject.keywordPlus RESISTANCE CHANGE -
dc.subject.keywordPlus WAVE-TRANSPARENT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.