File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김제형

Kim, Je-Hyung
Solid-State Quantum Architecture Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 7400 -
dc.citation.number 12 -
dc.citation.startPage 7394 -
dc.citation.title NANO LETTERS -
dc.citation.volume 17 -
dc.contributor.author Kim, Je-Hyung -
dc.contributor.author Aghaeimeibodi, Shahriar -
dc.contributor.author Richardson,Christopher J. K. -
dc.contributor.author Leavitt, Richard P. -
dc.contributor.author Englund, Dirk -
dc.contributor.author Waks, Edo -
dc.date.accessioned 2023-12-21T21:36:43Z -
dc.date.available 2023-12-21T21:36:43Z -
dc.date.created 2017-11-24 -
dc.date.issued 2017-12 -
dc.description.abstract Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons. -
dc.identifier.bibliographicCitation NANO LETTERS, v.17, no.12, pp.7394 - 7400 -
dc.identifier.doi 10.1021/acs.nanolett.7b03220 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85038208029 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22983 -
dc.identifier.url http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03220 -
dc.identifier.wosid 000418393300031 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Silicon quantum photonics -
dc.subject.keywordAuthor hybrid integration -
dc.subject.keywordAuthor quantum dots -
dc.subject.keywordAuthor single photons -
dc.subject.keywordPlus 2-PHOTON INTERFERENCE -
dc.subject.keywordPlus ENTANGLED PHOTONS -
dc.subject.keywordPlus LOW-POWER -
dc.subject.keywordPlus DOTS -
dc.subject.keywordPlus MODULATOR -
dc.subject.keywordPlus EMISSION -
dc.subject.keywordPlus CAVITIES -
dc.subject.keywordPlus SYSTEMS -
dc.subject.keywordPlus LIGHT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.