File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박노정

Park, Noejung
Computational Physics & Electronic Structure Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 47 -
dc.citation.startPage 1701747 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 29 -
dc.contributor.author Kim, Hyun-Tak -
dc.contributor.author Shin, HyeonOh -
dc.contributor.author Jeon, In-Yup -
dc.contributor.author Yousaf, Masood -
dc.contributor.author Baik, Jaeyoon -
dc.contributor.author Cheong, Hae-Won -
dc.contributor.author Park, Noejung -
dc.contributor.author Baek, Jong-Beom -
dc.contributor.author Kwon, Tae-Hyuk -
dc.date.accessioned 2023-12-21T21:36:50Z -
dc.date.available 2023-12-21T21:36:50Z -
dc.date.created 2017-11-15 -
dc.date.issued 2017-12 -
dc.description.abstract The direct formation of C-N and C-O bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form C-N and C-O bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N-2 or O-2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g(-1) for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm(-2) and 621 F g(-1) at 10 mV s(-1) for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility. -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.29, no.47, pp.1701747 -
dc.identifier.doi 10.1002/adma.201702747 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-85033457770 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22935 -
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1002/adma.201702747/abstract -
dc.identifier.wosid 000418068700004 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor carbon-heteroatom bonds -
dc.subject.keywordAuthor carbon nanomaterials -
dc.subject.keywordAuthor energy storage systems -
dc.subject.keywordAuthor ultrasonic chemistry -
dc.subject.keywordPlus ELECTROCHEMICAL CAPACITORS -
dc.subject.keywordPlus FUNCTIONALIZED GRAPHENE -
dc.subject.keywordPlus HIGH-PERFORMANCE -
dc.subject.keywordPlus SUPERCAPACITORS -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus FIXATION -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus NITROGEN-DOPED GRAPHENE -
dc.subject.keywordPlus OXYGEN REDUCTION REACTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.