File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 39698 -
dc.citation.number 45 -
dc.citation.startPage 39688 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 9 -
dc.contributor.author Kwon, Na Kyung -
dc.contributor.author Lee, Tae Kyung -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Kim, So Youn -
dc.date.accessioned 2023-12-21T21:38:46Z -
dc.date.available 2023-12-21T21:38:46Z -
dc.date.created 2017-10-23 -
dc.date.issued 2017-11 -
dc.description.abstract Localized surface plasmon resonance (LSPR) effect relies on the shape, size, and dispersion state of metal nanoparticles and can potentially be employed in many applications such as chemical/biological sensor, optoelectronics, and photocatalyst. While complicated synthetic approaches changing shape and size of nanoparticles can control the intrinsic LSPR effect, here we show that controlling interparticle interactions with silica-coated gold nanoparticles (Au@SiO2 NPs) is a powerful approach, permitting wide range of optical bandwidth of gold nanoparticles with great stability. The interparticle interactions of Au@SiO2 NPs are controlled through concentration-, temperature-, and time-dependent polymer-induced interactions. The polymer-induced interactions modulate the state of particle dispersion, resulting an effective plasmonic shift by more than 200 nm. We further explore the microstructure of particle aggregation and explain mechanisms of plasmonic shift based on the results of small-angle X-ray scattering (SAXS) and discrete dipole approximation (DDA) calculation. We show that an effective control of LSPR behavior is now available through trapped aggregation of Au@SiO2 NPs with temperature variation. We anticipate that the suggested strategy can be employed in many practical applications such as optical bio-imaging and optoelectronic devices. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.9, no.45, pp.39688 - 39698 -
dc.identifier.doi 10.1021/acsami.7b13123 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85034632853 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22840 -
dc.identifier.url http://pubs.acs.org/doi/abs/10.1021/acsami.7b13123 -
dc.identifier.wosid 000416203800062 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Aggregation Driven Controllable Plasmonic Transition of Silica-Coated Gold Nanoparticles with Temperature Dependent Polymer-Nanoparticle Interactions for Potential Applications in Optoelectronic Devices -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor silica-coated gold nanoparticles -
dc.subject.keywordAuthor polymer adsorption -
dc.subject.keywordAuthor colloidal stability -
dc.subject.keywordAuthor particle aggregation -
dc.subject.keywordAuthor solvent quality -
dc.subject.keywordAuthor localized surface plasmon resonance -
dc.subject.keywordAuthor plasmon hybridization -
dc.subject.keywordPlus DISCRETE-DIPOLE APPROXIMATION -
dc.subject.keywordPlus ENHANCED UP-CONVERSION -
dc.subject.keywordPlus DEPLETION INTERACTIONS -
dc.subject.keywordPlus SHELL NANOSTRUCTURES -
dc.subject.keywordPlus MOLECULAR-WEIGHT -
dc.subject.keywordPlus SOLVENT QUALITY -
dc.subject.keywordPlus PHASE-BEHAVIOR -
dc.subject.keywordPlus RESONANCE -
dc.subject.keywordPlus PARTICLES -
dc.subject.keywordPlus SIZE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.