BROWSE

Related Researcher

Author

Jeong, Hu Young
UNIST Central Research Facilities (UCRF)
Research Interests
  • Soft material characterization such as graphene using a low kV Cs-corrected TEM

ITEM VIEW & DOWNLOAD

Thermodynamically Stable Synthesis of Large-Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Thermodynamically Stable Synthesis of Large-Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices
Author
Lee, JuwonPak, SangyeonGiraud, PaulLee, Young-WooCho, YulijaeHong, JohnJang, A-RangChung, Hee-SukHong, Woong-KiJeong, Hu YoungShin, Hyeon SukOcchipinti, Luigi G.Morris, Stephen M.Cha, SeungNamSohn, Jung InnKim, Jong Min
Issue Date
201709
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED MATERIALS, v.29, no.33, pp.1702206 -
Abstract
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 μm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.
URI
Go to Link
DOI
http://dx.doi.org/10.1002/adma.201702206
ISSN
0935-9648
Appears in Collections:
SNS_Journal Papers
UCRF_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU