File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권순용

Kwon, Soon-Yong
Frontier, Innovative Nanomaterials & Devices Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 5118 -
dc.citation.number 8 -
dc.citation.startPage 5113 -
dc.citation.title NANO LETTERS -
dc.citation.volume 17 -
dc.contributor.author Ho, Duc Tam -
dc.contributor.author Kwon, Soon-Yong -
dc.contributor.author Park, Harold S. -
dc.contributor.author Kim, Sung Youb -
dc.date.accessioned 2023-12-21T22:06:40Z -
dc.date.available 2023-12-21T22:06:40Z -
dc.date.created 2017-08-10 -
dc.date.issued 2017-08 -
dc.description.abstract Most materials expand upon heating because the coefficient of thermal expansion (CTE), the fundamental property of materials characterizing the mechanical response of the materials to heating, is positive. There have been some reports of materials that exhibit negative thermal expansion (NTE), but most of these have been in complex alloys, where NTE originates from the transverse vibrations of the materials. Here, we show using molecular dynamics simulations that some single crystal monatomic FCC metal nanowires can exhibit NTE along the length direction due to a novel thermomechanical coupling. We develop an analytic model for the CTE in nanowires that is a function of the surface stress, elastic modulus, and nanowire size. The model suggests that the CTE of nanowires can be reduced due to elastic softening of the materials and also due to surface stress. For the nanowires, the model predicts that the CTE reduction can lead to NTE if the nanowire Young’s modulus is sufficiently reduced while the nanowire surface stress remains sufficiently large, which is in excellent agreement with the molecular dynamics simulation results. Overall, we find a “smaller is smaller” trend for the CTE of nanowires, leading to this unexpected, surface-stress-driven mechanism for NTE in nanoscale materials. -
dc.identifier.bibliographicCitation NANO LETTERS, v.17, no.8, pp.5113 - 5118 -
dc.identifier.doi 10.1021/acs.nanolett.7b02468 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85027222435 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22468 -
dc.identifier.url http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b02468 -
dc.identifier.wosid 000407540300083 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Negative Thermal Expansion of Ultrathin Metal Nanowires: A Computational Study -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Negative thermal expansion -
dc.subject.keywordAuthor metal nanowire -
dc.subject.keywordAuthor surface stress -
dc.subject.keywordAuthor elastic softening -
dc.subject.keywordAuthor molecular dynamics -
dc.subject.keywordPlus TEMPERATURE-DEPENDENCE -
dc.subject.keywordPlus SINGLE-CRYSTAL -
dc.subject.keywordPlus POISSONS RATIO -
dc.subject.keywordPlus SURFACE-STRESS -
dc.subject.keywordPlus AU -
dc.subject.keywordPlus CU -
dc.subject.keywordPlus AG -
dc.subject.keywordPlus STRENGTH -
dc.subject.keywordPlus STRAIN -
dc.subject.keywordPlus ZRW2O8 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.