File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이재성

Lee, Jae Sung
Eco-friendly Catalysis & Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 13129 -
dc.citation.number 25 -
dc.citation.startPage 13122 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 5 -
dc.contributor.author Anjum, Mohsin Ali Raza -
dc.contributor.author Lee, Min Hee -
dc.contributor.author Lee, Jae Sung -
dc.date.accessioned 2023-12-21T22:08:13Z -
dc.date.available 2023-12-21T22:08:13Z -
dc.date.created 2017-07-31 -
dc.date.issued 2017-07 -
dc.description.abstract Five phases of molybdenum carbide encapsulated by a boron-carbon-nitrogen (BCN) network are synthesized by decomposition of a Mo-imidazole-borate organometallic complex with slight variations in the imidazole-borate ligand structure. The method relies on the restrained in situ carburization reaction between Mo atoms and imidazole-borate ligands on an atomic scale, thus generating molybdenum carbide nanoparticles encapsulated conformally by the BCN shell. All phases of molybdenum carbide demonstrate excellent electrocatalytic hydrogen evolution reaction (HER) activity and stability in both acidic and basic electrolytes outperforming most of molybdenum carbides reported in the literature. Hexagonal beta-Mo2C@BCN consistently exhibits the most outstanding performance under all conditions. The less active cubic a and hexagonal eta phases also display enhanced HER activity and stability due to the promotional effect of the BCN shell. The dual natured (electrophilic and nucleophilic) BCN layers can protect molybdenum carbide nanoparticles from corrosion and agglomeration, and improve their electrocatalytic activity by serving as an electron transfer medium and providing ample adsorption sites for water due to enhanced wetting properties. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.5, no.25, pp.13122 - 13129 -
dc.identifier.doi 10.1039/c7ta03407e -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-85021632813 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22441 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2017/TA/C7TA03407E#!divAbstract -
dc.identifier.wosid 000404571500054 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title BCN network-encapsulated multiple phases of molybdenum carbide for efficient hydrogen evolution reactions in acidic and alkaline media -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus FRAMEWORKS -
dc.subject.keywordPlus NITRIDES -
dc.subject.keywordPlus TRANSITION-METAL CARBIDES -
dc.subject.keywordPlus LITHIUM ION BATTERIES -
dc.subject.keywordPlus NITROGEN -
dc.subject.keywordPlus SULFUR -
dc.subject.keywordPlus ELECTROCATALYST -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus GRAPHENE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.