File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction

Author(s)
Park, JongsikSa, Young JinBaik, HionsuckKwon, TaehyunJoo, Sang HoonLee, Kwangyeol
Issued Date
2017-06
DOI
10.1021/acsnano.7b00233
URI
https://scholarworks.unist.ac.kr/handle/201301/22394
Fulltext
http://pubs.acs.org/doi/abs/10.1021/acsnano.7b00233
Citation
ACS NANO, v.11, no.6, pp.5500 - 5509
Abstract
Nanoframe electrocatalysts have attracted great interest due to their inherently high active surface area per a given mass. Although recent progress has enabled the preparation of single nanoframe structures with a variety of morphologies, more complex nanoframe structures such as a double-layered nanoframe have not yet been realized. Herein, we report a rational synthetic strategy for a structurally robust Ir-based multimetallic double-layered nanoframe (DNF) structure, nanoframe@nanoframe. By leveraging the differing kinetics of dual Ir precursors and dual transition metal (Ni and Cu) precursors, a core shell-type alloy@alloy structure could be generated in a simple one-step synthesis, which was subsequently transformed into a multimetallic IrNiCu DNF with a rhombic dodecahedral morphology via selective etching. The use of single Ir precursor yielded single nanoframe structures, highlighting the importance of employing dual Ir precursors. In addition, the structure of Ir-based nanocrystals could be further controlled to DNF with octahedral morphology and CuNi@Ir core shell structures via a simple tuning of experimental factors. The IrNiCu DNF exhibited high electrocatalytic activity for oxygen evolution reaction (OER) in acidic media, which is better than Ir/C catalyst. Furthermore, IrNiCu DNF demonstrated excellent durability for OER, which could be attributed to the frame structure that prevents the growth and agglomeration of particles as well as in situ formation of robust rutile II, phase during prolonged operation.
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851
Keyword (Author)
nanoframekinetic controliridium-based nanocrystalternary alloyelectrocatalysisoxygen evolution reaction
Keyword
NANOSCALE INORGANIC CAGESONE-POT SYNTHESISMETHANOL OXIDATIONHYDROGEN EVOLUTIONPHASE SEGREGATIONHIGHLY EFFICIENTPTCU NANOFRAMESULTRATHIN WALLSGOLD NANOFRAMESCU NANOFRAMES

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.