File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 16080 -
dc.citation.title NATURE REVIEWS MATERIALS -
dc.citation.volume 2 -
dc.contributor.author Park, Minjoon -
dc.contributor.author Ryu, Jaechan -
dc.contributor.author Wang, Wei -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T23:07:12Z -
dc.date.available 2023-12-21T23:07:12Z -
dc.date.created 2017-07-24 -
dc.date.issued 2016-11 -
dc.description.abstract Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries. -
dc.identifier.bibliographicCitation NATURE REVIEWS MATERIALS, v.2, no.1, pp.16080 -
dc.identifier.doi 10.1038/natrevmats.2016.80 -
dc.identifier.issn 2058-8437 -
dc.identifier.scopusid 2-s2.0-85016757602 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22350 -
dc.identifier.url https://www.nature.com/articles/natrevmats201680 -
dc.identifier.wosid 000396483300002 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Material design and engineering of next-generation flow-battery technologies -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HIGH-ENERGY-DENSITY -
dc.subject.keywordPlus METAL-AIR BATTERIES -
dc.subject.keywordPlus VANADIUM REDOX -
dc.subject.keywordPlus COMPOSITE MEMBRANE -
dc.subject.keywordPlus ELECTROCHEMICAL PROPERTIES -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus NANOSTRUCTURED ELECTROCATALYSTS -
dc.subject.keywordPlus PHOTOELECTROCHEMICAL CELL -
dc.subject.keywordPlus SEMILIQUID BATTERY -
dc.subject.keywordPlus MOLECULAR-WEIGHT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.