File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 14589 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 8 -
dc.contributor.author Li, Wangda -
dc.contributor.author Dolocan, Andrei -
dc.contributor.author Oh, Pilgun -
dc.contributor.author Celio, Hugo -
dc.contributor.author Park, Suhyeon -
dc.contributor.author Cho, Jaephil -
dc.contributor.author Manthiram, Arumugam -
dc.date.accessioned 2023-12-21T22:19:48Z -
dc.date.available 2023-12-21T22:19:48Z -
dc.date.created 2017-05-12 -
dc.date.issued 2017-04 -
dc.description.abstract Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.8, pp.14589 -
dc.identifier.doi 10.1038/ncomms14589 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85021456225 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/21947 -
dc.identifier.url https://www.nature.com/articles/ncomms14589 -
dc.identifier.wosid 000400064000001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus POSITIVE ELECTRODE MATERIAL -
dc.subject.keywordPlus HIGH-VOLTAGE SPINEL -
dc.subject.keywordPlus ELECTRODE/ELECTROLYTE INTERFACE -
dc.subject.keywordPlus SOLID-ELECTROLYTE -
dc.subject.keywordPlus LI -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus PARTICLES -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus ORIGIN -
dc.subject.keywordPlus CYCLE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.