File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이영주

Lee, Young-Joo
Structural Reliability and Disaster Risk Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair

Author(s)
Lee, Young-JooKim, Robin E.Suh, WonhoPark, Kiwon
Issued Date
2017-04
DOI
10.3390/s17040936
URI
https://scholarworks.unist.ac.kr/handle/201301/21907
Fulltext
http://www.mdpi.com/1424-8220/17/4/936/htm
Citation
SENSORS, v.17, no.4, pp.936
Abstract
Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed.
Publisher
MDPI AG
ISSN
1424-8220
Keyword (Author)
railway bridgefatigue life updatinginspection and repairsystem reliability
Keyword
IDENTIFICATIONDAMAGESYSTEM RELIABILITYCRACK-GROWTHSTEEL

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.