File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권혁무

Kwon, Hyug Moo
Immunometabolism and Cancer Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Transcription factor NFAT5 promotes macrophage survival in rheumatoid arthritis

Author(s)
Choi, SusannaYou, SungyongKim, DonghyunChoi, Soo YounKwon, H. MooKim, Hyun-SookHwang, DaeheePark, Yune-JungCho, Chul-SooKim, Wan-Uk
Issued Date
2017-03
DOI
10.1172/JCI87880
URI
https://scholarworks.unist.ac.kr/handle/201301/21816
Fulltext
https://www.jci.org/articles/view/87880
Citation
JOURNAL OF CLINICAL INVESTIGATION, v.127, no.3, pp.954 - 969
Abstract
Defective apoptotic death of activated macrophages has been implicated in the pathogenesis of rheumatoid arthritis (RA). However, the molecular signatures defining apoptotic resistance of RA macrophages are not fully understood. Here, global transcriptome profiling of RA macrophages revealed that the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) critically regulates diverse pathologic processes in synovial macrophages including the cell cycle, apoptosis, and proliferation. Transcriptomic analysis of NFAT5-deficient macrophages revealed the molecular networks defining cell survival and proliferation. Proinflammatory M1-polarizing stimuli and hypoxic conditions were responsible for enhanced NFAT5 expression in RA macrophages. An in vitro functional study demonstrated that NFAT5-deficient macrophages were more susceptible to apoptotic death. Specifically, CCL2 secretion in an NFAT5-dependent fashion bestowed apoptotic resistance to RA macrophages in vitro. Injection of recombinant CCL2 into one of the affected joints of Nfat5+/-mice increased joint destruction and macrophage infiltration, demonstrating the essential role of the NFAT5/CCL2 axis in arthritis progression in vivo. Moreover, after intra-articular injection, NFAT5-deficient macrophages were more susceptible to apoptosis and less efficient at promoting joint destruction than were NFAT5-sufficient macrophages. Thus, NFAT5 regulates macrophage survival by inducing CCL2 secretion. Our results provide evidence that NFAT5 expression in macrophages enhances chronic arthritis by conferring apoptotic resistance to activated macrophages.
Publisher
AMER SOC CLINICAL INVESTIGATION INC
ISSN
0021-9738
Keyword
MONOCYTE CHEMOATTRACTANT PROTEIN-1CLODRONATE-CONTAINING LIPOSOMESSYNOVIAL TISSUEINFLAMMATORY ARTHRITISDISEASE-ACTIVITYOSMOTIC-STRESSLEUKEMIA-CELLSAPOPTOSISPROLIFERATIONACTIVATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.