File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

문회리

Moon, Hoi Ri
Functional Inorganic Nanomaterials Lab for Energy
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 978 -
dc.citation.number 5 -
dc.citation.startPage 973 -
dc.citation.title MATERIALS CHEMISTRY FRONTIERS -
dc.citation.volume 1 -
dc.contributor.author Jeong, Sungeun -
dc.contributor.author Seo, Bora -
dc.contributor.author Hwang, Jeong Min -
dc.contributor.author Joo, Sang Hoon -
dc.contributor.author Moon, Hoi Ri -
dc.date.accessioned 2023-12-21T22:17:20Z -
dc.date.available 2023-12-21T22:17:20Z -
dc.date.created 2017-01-04 -
dc.date.issued 2017-05 -
dc.description.abstract This paper reports a simple preparation route to a composite of small Ni2P nanoparticles (NPs) entrapped in 3D mesoporous graphene by the thermal conversion of a coordination compound followed by phosphidation. Recently, transition metal phosphides (TMPs) have gained increasing attention owing to their promising potential as non-precious metal catalysts in the hydrogen evolution reaction (HER). In order to enhance the catalytic activity of TMPs, researchers have sought to synthesize small TMP NPs to increase the catalytically active surface area. Although surfactant-mediated syntheses can produce small TMP NPs, a cumbersome surfactant removal step is necessary to generate catalytically active clean surfaces. Interfacing TMP NPs with carbon nanomaterials is another promising approach to boost the catalytic performance by providing high electrical conductivity and durability. However, the synthesis of composites of TMP NPs and carbon demands multiple synthetic steps, including the preparation of TMP NPs, synthesis of carbon nanomaterials, and dispersion of TMP NPs onto the carbon support. The essence of our approach toward the 3D graphene encapsulating Ni2P NPs (Ni2P@mesoG) lies in the utilization of the conversion phenomenon of [Ni2(EDTA)] (EDTA = ethylenediaminetetraacetate). The thermolysis of [Ni2(EDTA)] at 600 °C produces a composite of single-crystalline 5 nm-sized Ni NPs individually entrapped in 3D mesoG (Ni@mesoG), and the following phosphidation completely converts the Ni NPs to single-crystalline Ni2P NPs in mesoG (Ni2P@mesoG) without agglomeration. This solvent-free thermal conversion route to the Ni2P@mesoG composite is simple and scalable. Notably, graphitic shell layers in Ni2P@mesoG stabilize small Ni2P NPs possessing a large active surface area, and facilitate the electron transfer due to the intimate contact between them. Consequently, the use of Ni2P@mosoG exhibits superior electrocatalytic HER activity and durability in both strong acidic and basic media. -
dc.identifier.bibliographicCitation MATERIALS CHEMISTRY FRONTIERS, v.1, no.5, pp.973 - 978 -
dc.identifier.doi 10.1039/C6QM00269B -
dc.identifier.issn 2052-1537 -
dc.identifier.scopusid 2-s2.0-85033597740 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/21096 -
dc.identifier.url http://pubs.rsc.org/en/content/articlelanding/2017/qm/c6qm00269b#!divAbstract -
dc.identifier.wosid 000412448600024 -
dc.language 영어 -
dc.publisher ROYAL SOCIETY OF CHEMISTRY -
dc.title Direct conversion of coordination compounds into Ni2P nanoparticles entrapped in 3D mesoporous graphene for an efficient hydrogen evolution reaction -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.