File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

고현협

Ko, Hyunhyub
Functional Nanomaterials & Devices Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 36 -
dc.citation.number 1 -
dc.citation.startPage 22 -
dc.citation.title NANO RESEARCH -
dc.citation.volume 10 -
dc.contributor.author Lim, Seongdong -
dc.contributor.author Um, Doo-Seung -
dc.contributor.author Ha, Minjeong -
dc.contributor.author Zhang, Qianpeng -
dc.contributor.author Lee, Youngsu -
dc.contributor.author Lin, Yuanjing -
dc.contributor.author Fan, Zhiyong -
dc.contributor.author Ko, Hyunhyub -
dc.date.accessioned 2023-12-21T22:46:58Z -
dc.date.available 2023-12-21T22:46:58Z -
dc.date.created 2016-10-07 -
dc.date.issued 2017-01 -
dc.description.abstract The development of flexible photodetectors has received great attention for future optoelectronic applications including flexible image sensors, biomedical imaging, and smart, wearable systems. Previously, omnidirectional photodetectors were only achievable by integration of a hemispherical microlens assembly on multiple photodetectors. Herein, a hierarchical photodiode design of ZnO nanowires (NWs) on honeycomb-structured Si (H-Si) membranes is demonstrated to exhibit excellent omnidirectional light-absorption ability and thus maintain high photocurrents over broad spectral ranges (365 to 1,100 nm) for wide incident angles (0° to 70°), which enabled broadband omnidirectional light detection in flexible photodetectors. Furthermore, the stress-relieving honeycomb pattern within the photodiode micromembranes provided photodetectors with excellent mechanical flexibility (10% decrease in photocurrent at a bending radius of 3 mm) and durability (minimal change in photocurrent over 10,000 bending cycles). When employed in semiconductor thin films, the hierarchical NW/honeycomb heterostructure design acts as an efficient platform for various optoelectronic devices requiring mechanical flexibility and broadband omnidirectional light detection.[Figure not available: see fulltext.] © 2016 Tsinghua University Press and Springer-Verlag Berlin Heidelber -
dc.identifier.bibliographicCitation NANO RESEARCH, v.10, no.1, pp.22 - 36 -
dc.identifier.doi 10.1007/s12274-016-1263-y -
dc.identifier.issn 1998-0124 -
dc.identifier.scopusid 2-s2.0-84988603413 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/21051 -
dc.identifier.url http://link.springer.com/article/10.1007%2Fs12274-016-1263-y -
dc.identifier.wosid 000390066000003 -
dc.language 영어 -
dc.publisher TSINGHUA UNIV PRESS -
dc.title Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor flexible photodetector -
dc.subject.keywordAuthor photodiode -
dc.subject.keywordAuthor omnidirectional -
dc.subject.keywordAuthor hierarchical -
dc.subject.keywordAuthor zinc oxide nanowire -
dc.subject.keywordPlus SI SOLAR-CELLS -
dc.subject.keywordPlus ARTIFICIAL COMPOUND EYES -
dc.subject.keywordPlus HIGH-PERFORMANCE -
dc.subject.keywordPlus LARGE-AREA -
dc.subject.keywordPlus ULTRAVIOLET PHOTODETECTORS -
dc.subject.keywordPlus PHOTOVOLTAIC PERFORMANCE -
dc.subject.keywordPlus HIGH PHOTORESPONSE -
dc.subject.keywordPlus NANOWIRE ARRAYS -
dc.subject.keywordPlus GROWN GRAPHENE -
dc.subject.keywordPlus NANOROD ARRAYS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.