BROWSE

Related Researcher

Author

Seo, Yongwon
Advanced Clean Energy Lab (ACE Lab)
Research Interests
  • Gas Hydrate, Greenhouse Gas, Clean Energy

ITEM VIEW & DOWNLOAD

CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters
Author
Kim, SoyoungChoi, Sung-DeukSeo, Yongwon
Keywords
Carbon dioxide; Clathrate; Thermodynamic promoter; Flue gas
Issue Date
201701
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
ENERGY, v.118, no., pp.950 - 956
Abstract
Tetrahydrofuran (THF) as a water-soluble sII clathrate former, cyclopentane (CP) as a water-insoluble sII clathrate former, and tetra n-butyl ammonium chloride (TBAC) as a water-soluble semiclathrate former were used to investigate their thermodynamic promotion effects on clathrate-based CO2 capture from simulated flue gas. The phase equilibria of CO2 (20%) + N2 (80%) + promoter clathrates at different promoter concentrations revealed that the presence of THF, CP, and TBAC could significantly reduce the clathrate formation pressure. THF solutions provided the highest gas uptake and steepest CO2 concentration changes in the vapor phase, whereas TBAC solutions showed the highest CO2 selectivity (∼61%) in the clathrate phase. CP solutions exhibited a slower formation rate, but their final gas uptake and CO2 selectivity in the clathrate phase were comparable to the THF solutions. Raman spectroscopy confirmed the enclathration of both CO2 and N2 in the clathrate cages and a structural transition due to the inclusion of promoters in the clathrate phase. The overall experimental results indicate that TBAC is a viable thermodynamic promoter for clathrate-based CO2 capture from simulated flue gas, considering the lower pressure requirement for clathrate formation, higher CO2 enrichment in the clathrate phase, non-toxicity, and non-volatility.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.energy.2016.10.122
ISSN
0360-5442
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU