File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송창근

Song, Chang-Keun
Air Quality Impact Assessment Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1808 -
dc.citation.number 3 -
dc.citation.startPage 1789 -
dc.citation.title ATMOSPHERIC CHEMISTRY AND PHYSICS -
dc.citation.volume 16 -
dc.contributor.author Kim, M. -
dc.contributor.author Kim, J. -
dc.contributor.author Jeong, U. -
dc.contributor.author Kim, W. -
dc.contributor.author Hong, H. -
dc.contributor.author Holben, B. -
dc.contributor.author Eck, T. F. -
dc.contributor.author Lim, J. H. -
dc.contributor.author Song, C. K. -
dc.contributor.author Lee, S. -
dc.contributor.author Chung, C. -Y. -
dc.date.accessioned 2023-12-22T00:09:09Z -
dc.date.available 2023-12-22T00:09:09Z -
dc.date.created 2016-12-07 -
dc.date.issued 2016-02 -
dc.description.abstract An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4% (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an improved correlation with the measured AOD during the DRAGON-NE Asia campaign. The correlation between the new AOD and AERONET value shows a regression slope of 1.00, while the comparison of the original AOD data retrieved using the original aerosol model shows a slope of 1.08. The change of y-offset is not significant, and the correlation coefficients for the comparisons of the original and new AOD are 0.87 and 0.85, respectively. The tendency of the original aerosol model to overestimate the retrieved AOD is significantly improved by using the SSA values in addition to size distribution and refractive index obtained using the new model. -
dc.identifier.bibliographicCitation ATMOSPHERIC CHEMISTRY AND PHYSICS, v.16, no.3, pp.1789 - 1808 -
dc.identifier.doi 10.5194/acp-16-1789-2016 -
dc.identifier.issn 1680-7316 -
dc.identifier.scopusid 2-s2.0-84958763852 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/20941 -
dc.identifier.url http://www.atmos-chem-phys.net/16/1789/2016/ -
dc.identifier.wosid 000371284100036 -
dc.language 영어 -
dc.publisher COPERNICUS GESELLSCHAFT MBH -
dc.title Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS) -
dc.type Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus SKY RADIANCE MEASUREMENTS -
dc.subject.keywordPlus RADIATIVE-TRANSFER CODE -
dc.subject.keywordPlus GEOSTATIONARY SATELLITE -
dc.subject.keywordPlus SURFACE REFLECTANCE -
dc.subject.keywordPlus ATMOSPHERIC CORRECTION -
dc.subject.keywordPlus VECTOR VERSION -
dc.subject.keywordPlus SOURCE REGIONS -
dc.subject.keywordPlus HONG-KONG -
dc.subject.keywordPlus ACE-ASIA -
dc.subject.keywordPlus PART I -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.