BROWSE

Related Researcher

Author

Choi, Sung-Deuk
Environmental Analytical Chemistry Lab (EACL)
Research Interests
  • Persistent organic pollutants, Environmental Analysis and monitoring, Multimedia modeling

ITEM VIEW & DOWNLOAD

Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring
Author
Simon, ErwanChoi, Sung-DeukPark, Min-Kyu
Keywords
Forest fire; Ash; Soil; Washout; Erosion
Issue Date
201611
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF HAZARDOUS MATERIALS, v.317, no., pp.632 - 639
Abstract
Forest fires are a well-known source of polycyclic aromatic hydrocarbons (PAHs). After forest fires, residual ash above a soil layer can be highly contaminated with PAHs. However, little is known about the fate of these contaminants, particularly about their susceptibility to be transferred deeper into underlying soil or downstream during rainfall events. In this study, meteorological conditions, organic carbon (OC) content, and the 16 US-EPA priority PAHs in unburnt control soil, burnt soil, and ash were monitored for 16 months after a forest fire. Whereas the ash was significantly contaminated with PAHs, the levels of PAHs in the underlying burnt soil were similar to those of the control soil. In the ash bed, the levels of PAHs normalized by OC also decreased. Neither PAHs nor OC lost from the ash bed was substantially transferred to the underlying soil. Instead, significant amounts of PAHs in the ash bed were likely removed by surface runoff. Light PAHs were dominantly emitted from the forest fire, but they showed higher decreasing rates with total precipitation. These findings were explained by a conceptual model for the fate of PAHs, involving four distinct processes related to precipitation and two states of the ash bed.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.jhazmat.2016.06.030
ISSN
0304-3894
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU