File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 8153 -
dc.citation.number 41 -
dc.citation.startPage 8141 -
dc.citation.title SOFT MATTER -
dc.citation.volume 11 -
dc.contributor.author Long, Andrew W. -
dc.contributor.author Zhang, Jie -
dc.contributor.author Granick, Steve -
dc.contributor.author Ferguson, Andrew L. -
dc.date.accessioned 2023-12-22T00:49:31Z -
dc.date.available 2023-12-22T00:49:31Z -
dc.date.created 2015-11-04 -
dc.date.issued 2015-08 -
dc.description.abstract Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways. © 2015 The Royal Society of Chemistry -
dc.identifier.bibliographicCitation SOFT MATTER, v.11, no.41, pp.8141 - 8153 -
dc.identifier.doi 10.1039/c5sm01981h -
dc.identifier.issn 1744-683X -
dc.identifier.scopusid 2-s2.0-84944339306 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/19408 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2015/SM/C5SM01981H#!divAbstract -
dc.identifier.wosid 000363204000013 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Machine learning assembly landscapes from particle tracking data -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science -
dc.relation.journalResearchArea Chemistry; Materials Science; Physics; Polymer Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus NONLINEAR DIMENSIONALITY REDUCTION -
dc.subject.keywordPlus FREE-ENERGY LANDSCAPES -
dc.subject.keywordPlus JANUS PARTICLES -
dc.subject.keywordPlus DIFFUSION MAPS -
dc.subject.keywordPlus ELECTRIC-FIELDS -
dc.subject.keywordPlus SKETCH-MAP -
dc.subject.keywordPlus DYNAMICS -
dc.subject.keywordPlus REPRESENTATION -
dc.subject.keywordPlus NANOSTRUCTURES -
dc.subject.keywordPlus ALIGNMENT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.