File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 199 -
dc.citation.startPage 192 -
dc.citation.title NANO ENERGY -
dc.citation.volume 26 -
dc.contributor.author Park, Hyungmin -
dc.contributor.author Choi, Sinho -
dc.contributor.author Lee, Sung-June -
dc.contributor.author Cho, Yoon-Gyo -
dc.contributor.author Hwang, Gaeun -
dc.contributor.author Song, Hyun-Kon -
dc.contributor.author Choi, Nam-Soon -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T23:36:30Z -
dc.date.available 2023-12-21T23:36:30Z -
dc.date.created 2016-05-24 -
dc.date.issued 2016-08 -
dc.description.abstract Nanostructured silicon is a promising candidate material for practical use in energy storage devices. However, high temperature operation remains a significant challenge because of severe electrochemical side reactions. Here, we show the design of ultra-durable silicon made by introducing dual coating layers on the silicon surface, allowing stable operation at high temperature. The double layers, which consist of amorphous metal titanate and carbon, provide several advantages including: (i) suppression of volume expansion during insertion; (ii) creation of a stable solid-electrolyte interface layer; and (iii) preservation of original Si morphology over 600 cycles at high temperature. The resulting silicon-based anode exhibits a reversible capacity of 990 mA h g(-1) after 500 cycles at 25 degrees C and 1300 mA h g(-1) after 600 cycles at 60 degrees C with a rate of 1 degrees C. -
dc.identifier.bibliographicCitation NANO ENERGY, v.26, pp.192 - 199 -
dc.identifier.doi 10.1016/j.nanoen.2016.05.030 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-84969638861 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/19219 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S2211285516301525 -
dc.identifier.wosid 000384908700024 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Design of an Ultra-Durable Silicon-Based Battery Anode Material with Exceptional High-Temperature Cycling Stability -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Si-based battery anodes -
dc.subject.keywordAuthor High-temperature cycling stability -
dc.subject.keywordAuthor Stable solid-electrolyte-interphase layers -
dc.subject.keywordAuthor Metal titanate coating layer -
dc.subject.keywordAuthor Dual coating layer -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus SI ANODES -
dc.subject.keywordPlus COATED SI -
dc.subject.keywordPlus MECHANICAL-PROPERTIES -
dc.subject.keywordPlus AMORPHOUS-SILICON -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus ELECTROLYTES -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus PARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.