File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1257 -
dc.citation.number 4 -
dc.citation.startPage 1251 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 9 -
dc.contributor.author Chae, Sujong -
dc.contributor.author Ko, Minseong -
dc.contributor.author Park, Seungkyu -
dc.contributor.author Kim, Namhyung -
dc.contributor.author Ma, Jiyoung -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T23:49:19Z -
dc.date.available 2023-12-21T23:49:19Z -
dc.date.created 2016-05-17 -
dc.date.issued 2016-04 -
dc.description.abstract Nano-engineering of silicon anodes has contributed to the demonstration of a promising potential for high energy lithium ion batteries, through addressing the degradation of battery performance derived from severe volume changes during cycling. However, the practical use of nano-engineered silicon anodes is still stuck because of remaining challenges, such as the low tap density, poor scalability and inferior electrical properties. Herein, we successfully developed a new Fe-Cu-Si ternary composite (FeCuSi) by scalable spray drying and facile heat treatment. As a result, FeCuSi exhibited remarkable initial Coulombic efficiency (91%) and specific capacity (1287 mA h g-1). In order to exactly characterize the electrical properties of FeCuSi and directly compare them with industrially developed benchmarking samples such as silicon monoxide (SiO) and a silicon-metal alloy (Si2Fe), both half-cell and full-cell tests were performed with high electrode density (1.6 g cc-1) and high areal capacity (3.4 mA h cm-2). Overall, FeCuSi outperformed the benchmarking samples in terms of discharge capacity and capacity retention in high mass loading for 300 cycles. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.9, no.4, pp.1251 - 1257 -
dc.identifier.doi 10.1039/c6ee00023a -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-84964735343 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/19192 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2016/EE/C6EE00023A#!divAbstract -
dc.identifier.wosid 000374351200010 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus VOLUME-CHANGE -
dc.subject.keywordPlus NI ALLOY -
dc.subject.keywordPlus IN-SITU -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CRYSTALLINE -
dc.subject.keywordPlus LITHIATION -
dc.subject.keywordPlus NEGATIVE ELECTRODE REACTANT -
dc.subject.keywordPlus AMORPHOUS-SILICON -
dc.subject.keywordPlus LITHIUM BATTERIES -
dc.subject.keywordPlus RECHARGEABLE BATTERIES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.