File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

강석주

Kang, Seok Ju
Smart Materials for Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Self Assembled Block Copolymer Gate Insulators with Cylindrical Nanostructures for Pentacene Thin Film Transistor

Author(s)
Jo, Pil SungPark, Youn JungKang, Seok JuKim, Tae HeePark, CheolminKim, EunhyeRyu, Du YeolKim, Ho-Cheol
Issued Date
2010-08
DOI
10.1007/s13233-010-0805-5
URI
https://scholarworks.unist.ac.kr/handle/201301/18473
Fulltext
http://link.springer.com/article/10.1007%2Fs13233-010-0805-5
Citation
MACROMOLECULAR RESEARCH, v.18, no.8, pp.777 - 786
Abstract
This study examined the effect of a chemically nanostructured surface of cylinder forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and poly(styrene-b-4vinyl pyridine) (PS-b-P4VP) block copolymer gate dielectrics on the performance of the bottom gate pentacene organic thin film transistor (OTFT). The field effect mobility of pentacene is affected mainly by the chemical properties of the top skin of a block copolymer layer. In the case of PS-b-PMMA with cylindrical PMMA microdomains that are located very closely at the block copolymer-pentacene interface because the surface energy of PMMA is similar to that of PS, the field effect mobility in general corresponds to the area averaged value of the two mobilities with the pure PS and PMMA layer. On the other hand, PS-b-P4VP copolymer results in a similar field effect mobility to that of the pure PS layer because the cylindrical P4VP microdomains are embedded in the PS matrix of which the surface energy is much lower than that of P4VP. The orientation of the cylindrical PMMA microdomains with respect to the surface also affects the field effect mobility, where the PMMA microdomains are aligned perpendicular to the surface, gave rise to a mobility approximately 50% higher than those parallel to the surface. The composite model with parallel and series resistance units offers qualitative understanding of these results
Publisher
POLYMER SOC KOREA
ISSN
1598-5032

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.