File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 26429 -
dc.citation.number 48 -
dc.citation.startPage 26421 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 7 -
dc.contributor.author Lee, Youngoh -
dc.contributor.author Lee, Jiwon -
dc.contributor.author Lee, Tae Kyung -
dc.contributor.author Park, Jonghwa -
dc.contributor.author Ha, Minjung -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Ko, Hyunhyub -
dc.date.accessioned 2023-12-22T00:20:10Z -
dc.date.available 2023-12-22T00:20:10Z -
dc.date.created 2015-12-22 -
dc.date.issued 2015-12 -
dc.description.abstract When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.7, no.48, pp.26421 - 26429 -
dc.identifier.doi 10.1021/acsami.5b09947 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-84949646177 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/18021 -
dc.identifier.url http://pubs.acs.org/doi/10.1021/acsami.5b09947 -
dc.identifier.wosid 000366339100012 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor ZnO nanocones -
dc.subject.keywordAuthor antireflective -
dc.subject.keywordAuthor gap plasmons -
dc.subject.keywordAuthor surface-enhanced Raman scattering -
dc.subject.keywordAuthor tapered waveguide -
dc.subject.keywordPlus ABSORPTION ENHANCEMENT -
dc.subject.keywordPlus PHOTOCATALYTIC ACTIVITY -
dc.subject.keywordPlus GOLD NANOSTRUCTURES -
dc.subject.keywordPlus AG NANOPARTICLES -
dc.subject.keywordPlus GROWTH-MECHANISM -
dc.subject.keywordPlus SERS -
dc.subject.keywordPlus METAL -
dc.subject.keywordPlus SEMICONDUCTOR -
dc.subject.keywordPlus NANOWIRE -
dc.subject.keywordPlus SILVER -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.