File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Correlated two-particle diffusion in dense colloidal suspensions at early times: Theory and comparison to experiment

Author(s)
Dell, Zachary E.Tsang, BoyceJiang, LingxiangGranick, SteveSchweizer, Kenneth S.
Issued Date
2015-11
DOI
10.1103/PhysRevE.92.052304
URI
https://scholarworks.unist.ac.kr/handle/201301/17911
Fulltext
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.052304
Citation
PHYSICAL REVIEW B, v.92, no.5, pp.052304
Abstract
The spatially resolved diffusive dynamic cross correlations of a pair of colloids in dense quasi-two-dimensional monolayers of identical particles are studied experimentally and theoretically at early times where motion is Fickian. In very dense systems where strong oscillatory equilibrium packing correlations are present, we find an exponential decay of the dynamic cross correlations on small and intermediate length scales. At large separations where structure becomes random, an apparent power law decay with an exponent of approximately -2.2 is observed. For a moderately dense suspension where local structural correlations are essentially absent, this same apparent power law decay is observed over all probed interparticle separations. A microscopic nonhydrodynamic theory is constructed for the dynamic cross correlations which is based on interparticle frictional effects and effective structural forces. Hydrodynamics enters only via setting the very short-time single-particle self-diffusion constant. No-adjustable-parameter quantitative predictions of the theory for the dynamic cross correlations are in good agreement with experiment over all length scales. The origin of the long-range apparent power law is the influence of the constraint of fixed interparticle separation on the amplitude of the mean square force exerted on the two tagged particles by the surrounding fluid. The theory is extended to study high-packing-fraction 3D hard sphere fluids. The same pattern of an oscillatory exponential form of the dynamic cross correlation function is predicted in the structural regime, but the long-range tail decays faster than in monolayers with an exponent of -3
Publisher
AMER PHYSICAL SOC
ISSN
2469-9950
Keyword
HYDRODYNAMIC INTERACTIONSCONCENTRATED SUSPENSIONCOOPERATIVE DYNAMICSSPHERESLIQUIDSMICRORHEOLOGYSCATTERINGPARTICLESNEUTRONSEQUATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.