File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신태주

Shin, Tae Joo
Synchrotron Radiation Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide

Author(s)
Kim, Jong-SeongRee, MoonhorShin, Tae JooHan, Oc HeeCho, Sung JuneHwang, Yong-TaekBae, Joong YeonLee, Jae MinRyoo, RyongKim, Heesoo
Issued Date
2003-08
DOI
10.1016/S0021-9517(03)00082-4
URI
https://scholarworks.unist.ac.kr/handle/201301/16635
Fulltext
http://www.sciencedirect.com/science/article/pii/S0021951703000824
Citation
JOURNAL OF CATALYSIS, v.218, no.1, pp.209 - 219
Abstract
The local and microstructures of zinc glutarates synthesized from various zinc sources were investigated by X-ray absorption and solid-state carbon-13 nuclear magnetic resonance spectroscopy, and related to their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. It was found that the local structure around the Zn atoms of the zinc glutarate catalysts consists basically of tetrahedrally coordinated carboxyl oxygen atoms with a Zn-O bond distance in the range 1.95-1.96 Angstrom, and that the nearest neighbor Zn atom distance is 3.19-3.23 Angstrom. These results suggest that the catalysts have a network structure composed of layers interconnected by glutarate ligands. However, the first-shell structures of the catalysts tested are somewhat different, which might originate from differences in the catalysts' overall crystallinity and crystal quality (crystal size and perfection) produced by their different synthetic routes. The surface areas of the catalysts also varied with synthetic route. In the copolymerization, one catalyst with low surface area but the highest crystallinity and best crystal quality shows the highest catalytic activity, which is contrary to the usual expectation of increased catalytic activity with increased catalyst surface area. Therefore, the catalytic activities of zinc glutarates in the copolymerization seem to depend primarily on their morphological structures rather than on their surface areas. The surface areas of zinc glutarates may play a crucial role in improving the catalytic activity in the copolymerization when they first meet the morphological requirements (i.e., high crystallinity and crystal quality). (C) 2003 Elsevier Inc. All rights reserved
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
ISSN
0021-9517

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.