File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

서판길

Suh, Pann-Ghill
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance

Author(s)
Yoon, Jong HyukKim, DayeaJang, Jin-HyeokGhim, JaewangPark, SoyeonSong, ParkyongKwon, YonghoonKim, JaeyoonHwang, DaeheeBae, Yoe-SikSuh, Pann-GhillBerggren, Per-OlofRyu, Sung Ho
Issued Date
2015-04
DOI
10.1074/mcp.M114.039651
URI
https://scholarworks.unist.ac.kr/handle/201301/11536
Fulltext
http://www.mcponline.org/content/14/4/882
Citation
MOLECULAR & CELLULAR PROTEOMICS, v.14, no.4, pp.882 - 892
Abstract
Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1-formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity. ⓒ 2015 by The American Society for Biochemistry and Molecular Biology, Inc
Publisher
American Society for Biochemistry and Molecular Biology
ISSN
1535-9484
Keyword
SKELETAL-MUSCLE CELLSENDOPLASMIC-RETICULUM STRESSENDOCRINE ORGANGLUCOSE-UPTAKEINFLAMMATIONACTIVATIONA1APOPTOSISPROTEINSMYOKINES

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.