File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 7861 -
dc.citation.number 15 -
dc.citation.startPage 7855 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 3 -
dc.contributor.author Li,Fei -
dc.contributor.author Xing, Yuan -
dc.contributor.author Huang, Ming -
dc.contributor.author Li, Kai Lin -
dc.contributor.author Yu, Ting Ting -
dc.contributor.author Zhang, Yu Xin -
dc.contributor.author Losic, Dusan -
dc.date.accessioned 2023-12-22T01:21:19Z -
dc.date.available 2023-12-22T01:21:19Z -
dc.date.created 2015-05-15 -
dc.date.issued 2015-04 -
dc.description.abstract Herein, we demonstrate the synthesis of size- and shape-controlled MnO2 nanostructures by replica molding from diatom silica structures for high-performance supercapacitors. Three types of hierarchical hollow MnO2 patterns with different three-dimensional (3D) structures, shapes and large surface areas were successfully prepared from three diatom species by a template-assisted hydrothermal process. The extraordinary precision and nano-scale resolution of 3D replications of complex biological architecture from diatoms to artificial MnO2 structures are confirmed. Detailed electrochemical measurements reveal that the Melosira-type MnO2 pattern exhibits not only a high specific capacitance of 371.2 F g-1 at a scan rate of 0.5 A g-1, but also relatively good cycle stability (93.1% capacitance retention after 2000 cycles at a scan rate of 5 A g-1), demonstrating a promising application as supercapacitor electrode materials. ⓒ The Royal Society of Chemistry 2015 -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.3, no.15, pp.7855 - 7861 -
dc.identifier.doi 10.1039/c5ta00634a -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-84926484113 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/11503 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2015/TA/C5TA00634A#!divAbstract -
dc.identifier.wosid 000352441100024 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRYROYAL SOC CHEMISTRY -
dc.title MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus STATE ASYMMETRIC SUPERCAPACITORS -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus NANOWIRE ARRAYS -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus ADSORPTION -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus NANOTUBES -
dc.subject.keywordPlus GEL -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.