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ABSTRACT Particulate matter forecasting is fundamental for early warning and controlling air pollution,
especially PM2.5. The increase in this level of concentration will lead to a negative impact on public health.
This study develops a hybrid model of CNN-LSTM and CONV-LSTM by combining a convolutional neural
network (CNN) with an LSTM network to forecast PM2.5 concentration for the next few hours in Kemayoran
DKI Jakarta, which is known as a busy area. We discovered the advantages of CNN in effectively extracting
features and LSTM in learning long-term historical data from PM2.5 concentration time series data. The
predictive model of CNN-LSTM is carried out in a different architecture where the CNN process is carried
out first to become the input of LSTM. For CONV-LSTM, it is carried out in one architecture where the
multiplication in the LSTM architecture is coupled with the convolution process. This research will explain
how the method of developing hybrid CNN-LSTM and CONV-LSTM in predicting PM2.5 concentrations.
Based on metric evaluation, the two models are compared to find the best model. Both predictive models
produce MAPE values that fall into the good enough category with values <20%. Results were obtained
for CONV-LSTM with MAE worth 6.52, RMSE 8.55, and MAPE 16.39%. As a result, the CONV-LSTM
model performs better than CNN-LSTM in nowcasting PM2.5.

INDEX TERMS PM2.5, time series, CNN, LSTM, nowcasting.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

I. INTRODUCTION
The World Health Organisation (WHO) points out that
air pollution has overwhelmed human life from various
directions [1], [2], [3], [4]. Air pollution is a severe problem
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in big cities in Indonesia. There are six main types of
pollutants based on the World Air Quality Index (WAQI),
which include Ozone (O3), Nitrogen Dioxide (NO2), Sulphur
Dioxide (SO2), Carbon Monoxide (CO), PM2.5, and PM10
emissions. The main concern, however, is the content of
particulate Matter (PM) 2.5 as it is one of the most dangerous
types of major pollutants if it exceeds the safe limit of the
World Health Organization standard when the concentration
is less than 25 µg/m3 [5], [6].
PM2.5 is a very small air pollutant, about 2.5 micrometers

or less in diameter, which is smaller than 3% of the diameter
of a human hair. PM, also known as particle pollution,
constitutes a blend of solid and liquid particles present in
the air. This amalgamation encompasses particles such as
dust, dirt, soot, and smoke. Prolonged exposure to heightened
levels of PM2.5 is linked to a spectrum of respiratory
issues, including exacerbated asthma, bronchitis, and other
respiratory as well as cardiovascular diseases [2], [3],
[4], [6], [7].

Jakarta is the national capital of Indonesia, well-known as
the nation’s economic, political, and cultural center, with a
metropolitan area of 6392 m2 [8], [9], [10] It is reported that
Jakarta’s air quality is inferior, with many factors contributing
to the high pollution in Jakarta [3]. The Meteorology,
Climatology, and Geophysics Agency (BMKG) has recorded
that the decline in air quality in the Jakarta area is
caused by conducive meteorological factors that cause the
accumulation of PM2.5 concentrations. The Kemayoran area
in Jakarta shows that throughout June 2022, the average
concentration of PM2.5 was 41 µg/m3, which is included
in the moderate category. Specifically, the Kemayoran area
contributed the highest pollution with 169 US AQI, equal to
90 µg/ m3, followed by Pejaten Barat with 155 US AQI or
63.2 µg/ m3 [11]. In third place, the US Embassy in Central
Jakarta touched 153 US AQI or 59.3 µg/ m3.
Therefore, we investigate PM2.5 forecasting in the

Kemayoran area with the next hour’s output. The prediction
results can help prevent public health from the adverse
effects of air pollution. Apart from the people, this real-time
prediction allows more rapid decision-making in many
sectors, such as transport, energy, and industry [12], [13],
[14]. Using real-time PM2.5 prediction, companies can reduce
production or postpone activities that produce air pollutant
emissions. The best time to predict PM2.5 is within the
next 24 hours since the further ahead the prediction is; the
more likely weather and pollution patterns will affect it.
By predicting PM2.5 for the next approximately 24 hours, the
timeframe is sufficient to provide information for the public
to take preventive actions like avoiding outdoor activities and
using air masks if PM2.5 concentrations are expected to be
elevated [15], [16], [17], [18].
Predictions on a narrow domain interval (24 hours

ahead) require detailed and accurate observation data. PM2.5
concentration data has a large amount of historical data
and tends to have high volatility or rapid and significant

fluctuations in variable levels, which can be challenging
to estimate data trends and patterns [19]. It is also known
that PM2.5 concentrations show a diurnal pattern indicating
the difference between day and night, where the data tends
to increase in the early mornings and decrease in the
afternoons and the evenings, revealing a complex relationship
between time of day and PM2.5 concentrations [20], [21],
[22], [23].

Deep learning is an advanced machine learning imple-
mentation method based on artificial neural networks,
popularly adopted in the past few years. Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN)
are commonly used for pattern detection [24], [25], [26],
object detection [27], [28], [29], image classification [30],
[31], [32], and other purposes. At the same time, RNN
has shortcomings, especially the problem of long-term
dependence on time series data which causes loss of gradient,
leading to the formation of the Long Short-Term Memory
(LSTM) algorithm, which is a development of RNN in
overcoming these problems. Data growth requires more
complex analysis models, such as hybrid deep learning
models, CNN, and LSTM, for forecasting [33], [34], [35],
[36]. CNN can perform feature extraction on the model,
and LSTM works in predicting data over a long period. For
this reason, this study uses CNN-LSTM and CONV-LSTM
methods in predicting PM2.5, where the results of the two
approaches will be compared based on the evaluation of the
specified model metrics.

This paper presents novel predictive hybrid models
designed to address the challenge of forecasting hourly
PM2.5 concentrations. Our innovative approach leverages
air quality observation data collected from the Kemay-
oran BMKG station in Central Jakarta during the period
from 21 May to 21 June 2022 for model development.
This study makes several noteworthy contributions. Pri-
marily, a comparative analysis of two distinct hybrid
methods, CNN-LSTM and CONV-LSTM, sheds light on
their effectiveness and relative advantages in predicting
PM2.5 concentrations, thereby providing valuable insights
for further advancements. Secondly, the use of LSTM in
PM2.5 prediction is shown to be advantageous in handling
long-term temporal dependencies and capturing historical
information within the data sequence to discern and model
temporal patterns. The convolution process in CNN-LSTM
and CONV-LSTM further augments the prediction accuracy.
Finally, the application of the best-performing method
yields precise predictions for the next 24 hours in the
Kemayoran area, with minimal errors. This outcome holds
significant potential for assisting stakeholders, including
environmental agencies, government entities, and the general
public, in implementing more effective measures to mitigate
exposure to air pollution. The distinctiveness of our models
lies in its ability to offer enhanced prediction accuracy
through the integration of CNN-LSTM and CONV-LSTM,
thereby contributing to the ongoing discourse on the PM2.5
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prediction models. The remainder of the paper is organized
as follows. ‘‘Methodology’’ section reviews recent and
popular statistics and data science methods for forecast-
ing and nowcasting. ‘‘Discussion’’ section presents our
dataset and research location. ‘‘Results and Discussion’’
describes descriptive statistics and analysis using our pro-
posed methods. Finally, section ‘‘Practical Implication’’ and
‘‘Conclusion’’.

II. METHODOLOGY
There are three main ways to predict air quality: numerical
modeling, statistical modeling, and artificial intelligence
(AI) methods. In numerical modeling, it usually solves
very complex differential equations which require model-
ing procedures with considerable time and computational
cost [37]. Statistical modeling makes use of collected data
under statistical assumptions and properties of the data [38],
[39], [40]. One classical statistical modeling often used
is Autoregressive Integrated Moving Average (ARIMA).
Several assumptions such as stationarity are not satisfied
in practice, which makes it pretty challenging to identify
non-linear relationships in the data [41].
The other approach to predicting air quality is using AI

algorithms. Machine learning algorithms such as Support
Vector Regression (SVR) [42], [43], [44], Random Forest
(RF) [45], [46], [47], [48], Extreme Gradient Boosting
(XGBoost) [49], [50], [51], [52], and Artificial Neural
Networks (ANNs) have shown their applicability to air
quality prediction. Among thease, conventional statistical
models such as SVR [53], [54], [55], RF Pipeline (RFP) [11],
[56], [57], ARIMA [58], [59], Seasonal ARIMA(SARIMA)
[60], [61], and Multi-Layer Perceptron (MLP) [62], [63],
[64], [65] have lower prediction evaluation values than
technology-based neural network methods [66], [67], [68],
[69].

In fact, this neural network based approach can handle
complex non-linear relationships in themodel, robust to noise
in the data. With the advancement of AI algorithms, deep
neural networks (DNNs) have become a promising option
for predicting air quality, which is because deeper and wider
networks for complex data analysis are required for bigger
data size. One can find a few works in the literature about
predicting time series data using machine learning. However,
[70] shows the superiority of an artificial neural network
(ANN) method in predicting PM2.5 concentrations in Delhi.
However, ANN is still not good enough in dealing with
time series data having repeating patterns because it does
not remember previous time patterns. As a evidence, [71]
used LSTM for a different task of predicting air pollution
concentrations with various method comparisons. In line with
this, [72], [73] predicted stock prices and air quality indices
by comparing several deep learning methods. The results
of these two studies confirmed the best performance of the
CNN-LSTM hybrid approach for predicting stock prices and
air prices quality index.

A. PRE-PROCESSING
In this research, we use essential stages, including data
preprocessing, handling missing data, scaling the dataset,
dividing training and testing data, modeling CNN-LSTM
and CONV-LSTM, selecting the best model, and making
predictions. The data preprocessing stage is to identify
anomalies in the data and handle data imputation, followed
by data scaling using z-score. Immediately after the data
preprocessing stage, data splitting or partitioning will be
carried out in three parts: training, validation, and test data.
Data separation is carried out with four scenarios with
different proportions, specifically 90:10, 80:20, 70:30, and
60:40 [74], [75], [76], [77].

In the next stage, predictive model modeling using
CNN-LSTM and CONV-LSTM, with each step of the
predictive model, the CNN-LSTM method will be processed
in several CNN layers first so that the output of the CNN
becomes the input for the LSTM process, while for the
CONV-LSTM method is carried out in the same architecture
as LSTM so that the data splitting process will be the
input for the CONV-LSTM process. After modeling the
predictive model, the model will be trained until the loss in
the model reaches an optimal or convergent point; if it has
been achieved, the next step is to evaluate the model using
three evaluation metrics, namely RMSE, MAE, and MAPE.
In reaching the goal in this research, an increase in the trained
model is carried out with a maximum iteration value until
it produces a MAPE value of <20% (the forecasting model
category is quite good). The last stage in this research is to
predict PM2.5 concentrations based on the model that has
the minimum metric evaluation value or the minimum metric
value.

The LSTM architecture has three gates, each having a
process to protect and control states which are horizontal
lines with the ability to all output layers in the LSTM [85].
Forget gates that determine which information should be
retained and discarded from cell states; selecting information
that is retained reduces the amount of information that must
be passed and processed in each layer so that forget gates
can help overcome the vanishing gradient problem [80],
[86], [87], [88], [89]. The input gate consists of two parts;
the first part uses a sigmoid function to determine which
information is updated, and the second part uses a tanh
process to determine the vector to be added to the cell state.
The next step is to determine the output result, where the
sigmoid layer determines the part of the cell state that will
be output.

ft = σ (Wf . [ht−1, xt ] + bf ) (1)

it = σ (Wi. [ht−1, xt ] + bi) (2)

Ct = ft ∗ Ct−1 + it ∗ Ct (3)

ot = σ (Wo. [ht−1, xt ] + bo) (4)

where σ represent activation function, t represents the
current time statet, t – 1 represents the previous time state,
X represents input, H represents output, and W f ,W i,WC
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FIGURE 1. Research flowchart.

andWo are input weights, bf , bi, bc and bo are bias weights.
Each gate in the LSTM architecture has a weight that can
be adjusted during the training process, thus helping the
LSTM learn to organize the information received and stored
in thememory cells. Utilizing gates, memory cells, and states,
the LSTM can overcome the vanishing gradient problem
of traditional RNNs and learn to remember information
over a longer time [36]. As in the forget gates process,
which determines which information should be retained and
discarded from the cell sites by the sigmoid layer, which
produces an output number between 0 and 1 to control how
much information will be kept in long-term memory and
how much information will be passed to the LSTM output,
by selecting the retained information it reduces the amount of
information that must be passed and processed at each layer
so that forget gates can help overcome the vanishing gradient
problem.

B. CNN FOR TIME SERIES APPLICATION
A CNN architecture is applied to PM2.5 concentration data
where n is the length of the time series and k the number
of variables. The downward pointing arrow in Figure 2
shows the window’s movement. The red color shows the
convolutional filter used to extract features from the time
series data. This filter will be shifted along the data window
by a specific interval.

The kernel or filter used in convolution always has the same
width as the time series (following the feature data), and the
length can vary. In the convolution process, the kernel moves
in one direction from the beginning of the first time series to
the end [14]. The advantage of using CNN to extract features
on univariate time series datasets is that it can recognize

local patterns or features hidden in the data and convert them
into more understandable parts of the model. This results in
computational efficiency and the model’s accuracy. Although
most CNN applications consider non-temporal image data,
this study expands its realm to temporal data effectively for
time series data forecasting by teaming up with LSTM.

Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) networks turn out to be a
powerful duo for predicting PM2.5 levels. On the one hand,
CNN reveals spatial patterns, helping us understand where
pollution is coming from and how it spreads locally. On the
other hand, LSTM figures out how pollution levels change
over time—whether it’s daily, seasonally, or over the long
term. LSTM is also effective in handling data collected in
irregular time intervals. This is another advantageous feature
of LSTM in the prediction because data monitoring may
not always be conducted on a strict schedule. By combining
both their strengths, we can a smart system that can grasp
the full picture of what’s going on with PM2.5, giving
us better predictions and a clearer understanding of air
quality.

C. CNN-LSTM
CNN works to extract knowledge in the representation of
time series data, while LSTM identifies short-term and long-
term dependencies [13]. One of CNN’s main advantages
is the local perception feature and weight sharing, which
can significantly reduce the number of parameters and thus
improve efficiency in the training process.

This CNN process consists of two main components: the
convolutional layer (1D Conv) and the pooling layer. Each
convolutional layer contains several convolution kernels, with
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FIGURE 2. Our approches CNN for time series application.

calculations such as equation 5 below:

lt = tanh(xt ∗Wt + bt ) (5)

where lt represents the output value of the convolution
process, tanh is the activation function, xt represents the
input,Wt represents the weight of the convolution kernel, and
bt is the bias of the convolution kernel. After the convolution
operation in the convolutional layer, the important features
of the data are extracted, causing an increase in the feature
dimension [90], [91]. Furthermore, there is a pooling layer to
overcome the increase in feature dimension by reducing the
number of extracted features again.

The following Figure 3 illustrates the CNN-LSTM
architecture model. The CNN process consists of 2 main
components: the convolutional layer (1D Conv) that receives
input from time steps in a 1D (one-dimensional) array. It then
processes mathematical operations in extracting input data
features by taking special features such as trends, patterns,
or certain variations from PM2.5 concentration data, with
convolution operations followed by activation operations,
such as ReLU, to add non-linearity to the output.

During this process, a feature representation matrix
consists of several layers that represent feature extraction
results from different filters (See yellow color). In the second
layer of CNN, a pooling operation is performed using the
Max-Pooling layer to reduce the input dimensions from the
convolutional layer process resulting in smaller segments
(See red color); dimensional reduction is made by selecting
the maximum value of each piece to speed up the training
process. Then, to process the data into the format needed by
LSTM, there is a flattened layer changing the output of the
CNN layer in the form of a matrix into a one-dimensional
vector.

Followed by the LSTM process and Fully-connected Layer
(FC), or dense layer, which helps take the output of LSTM

FIGURE 3. Our CNN-LSTM approch for time series application.

and process it into a predictive value [13]. Therefore, it can
be explained that the work generated from the primary
component or CNN layer will be collected to a smaller
dimension and then channelled into the LSTM layer so that
the output layer results in the form of predictions [17].

D. CONV-LSTM
CONV-LSTM is a one-dimensional convolutional model
which contains convolution operations in LSTM cells [92].
This model can, then, process long-term dependencies. When
the input matrix multiplication is calculated with LSTM
cells, the process will be added with the convolution oper-
ation. The convolution operation takes two inputs, namely
the kernel matrix and the input matrix. The kernel matrix
scans the input matrix by multiplying each kernel element
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FIGURE 4. Conv-LSTM [93], [94], [95], [96].

with the corresponding component of the input and summing
them [93], [94], [95]. The kernel weights are iteratively
adjusted during training to optimize the prediction [96].
The CONV-LSTM cell has the same architecture as the
LSTM, which consists of input gates, forget gates, output
gates, and candidate values. In the CONV-LSTM cell, the
input, forget, and output gate information is calculated using
convolution operations on the hidden state and memory cells
from the previous timestep ht−1 and the input at the current
timestep Xt .

ft = σ
(
Wxf ∗ xt + whf ∗ ht−1 +W ◦

cf ct−1 + bf
)

(6)

it = σ
(
Wxi ∗ xt + whi ∗ ht−1 +W ◦

cict−1 + bi
)

(7)

Ct = f ◦
t Ct−1 + i◦t R(Wxc ∗ xt +Whc ∗ ht−1 + bc (8)

Ot = σ (Wxo ∗ xt + who ∗ ht−1 +W ◦
coct−1 + bo) (9)

Wcf ,Wci,Wco,Whi,Wxi,Who,Wxo,Wxf ,Wxc,Whf represent
convolutional kernels used in the model, and bi, bf , bo, bC
are bias vectors [92], [97]. Figure 4 shows the CONV-LSTM
architecture, where the red line indicates the additional
connections found in the CONV-LSTM cell above the LSTM
cell, which are derived from the current and previous cell
states. The red line explains which forget gates, input
gates, and output gates have a kernel matrix multiplication
operation with the previous cell statesW ◦

cf ct−1 ( for instance,
in forget gates). In addition to the LSTM’s ability to
capture temporal correlation and simultaneously represent
detailed local information in the feature data by convolution
process [82], [98], [99]. CONV-LSTM can help reduce the
model size, especially for large input sizes. So the benefit of
the CONV-LSTMmethod is that while the LSTMprior works
well in terms of overall information interaction in weight
calculation and convolution is more adaptable to represent
more detailed local information.

III. DISCUSSION
The data used in this study is hourly observation data
obtained from the Central Meteorology, Climatology and
Geophysics Agency in 2022 on 21 April to 21 June regarding

PM2.5concentrations in the Kemayoran area, Central Jakarta.
The data used in this study were 1488 data.

It was identified that there was an anomaly problem in
the PM2.5 data in the Kemayoran area, where data anomalies
deviated from the observations of PM2.5concentrations,
which could be caused by errors in the equipment, such as
an inadequate maintenance process. Due to anomalies, it can
affect the results of the analysis. Also, the evaluation of the
model to be produced, so in this study, the anomalies in the
observation data will be removed as handling, which causes
missing data.

In filling in the empty values, imputation of data is carried
out, one of which is the interpolation process, which estimates
unknown data points between two known issues. In this study,
the interpolation method used is spline interpolation which
has the advantage of being able to produce more minor errors
and produce smoother interpolation results.

The datasets we use have values ranging from 1 to 91µg/m3

with an average value of 22.99 µg/m3 yang which
shows the concentration of PM2.5 in Kemayoran is in the
moderate category. Still, there are some observation data
in certain time ranges that reach the unhealthy category
(66-150 µg/m3) so it can be said that PM2.5 concentrations
can change at different times. Data scaling by equation (10)
helps maintain the range of PM2.5 concentration values so
that they remain balanced for the performance improvement
in training the datasets.

z =
x − µ

σ
(10)

The next step is to split data into three parts: training
data, validation data, and test data. Data splitting involves
determining the data by date to make it easier to read the
comparison chart. In this study, 1488 PM2.5 concentration
data were split into several scenarios to improve the accuracy
and generalization of the data described in Figure 5.

IV. RESULTS
This study employs the Tensorflow Keras library in conjunc-
tion with the Python programming language for analysis and
predictive modeling. For additional details, a GitHub link is
provided in the data acknowledgment section as a reference.

Table 1 shows the CNN-LSTM model. The first layer or
layer is the input of the Convolutional Neural Network (CNN)
architecture, where this 1D convolution layer functions in
extracting features in the time series s. This layer is formed
with three dimensions; the first dimension (None) is a sample
(many rows of data) or the amount of input data used in a
batch (batch size) and has not been determined during the
model compilation process; the second dimension represents
the time step used in prediction which is 24, and the last
dimension represents the number of filters in the convolution
process of 64.

Then, the next layer has an LSTM layer with 16 neuron
units to process sequential data and produce output at each
time st. The dense layer with 24 neuron units shows the
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FIGURE 5. PM2.5 concentration by splitting 60:40 (A), 70:30 (B), 80:20(C), and 90:10 (D).

TABLE 1. Layer model of CNN-LSTM.

coating has one output value, namely the prediction target
value for the next 24 hours.

The CNN-LSTM model has demonstrated proficiency
in extracting spatial features and local patterns from the
PM2.5 data, particularly good at capturing the distribu-
tion of pollutants. This capability allows for a nuanced
understanding of localized pollution sources and the spatial
dynamics influencing PM2.5 concentrations. On the other
hand, the CONV-LSTM model, with its integrated convo-
lutional and LSTM layers, has exceled in simultaneously
capturing both spatial and temporal dependencies in the
time series data. The convolution operations enhance feature
extraction, while LSTM handles long-term temporal depen-
dencies, providing a comprehensive approach to modeling
the intricate patterns within the PM2.5 concentration data.
Through the performance assessments of these models, this
work underscores the significance of a hybrid approach
that combines spatial and temporal modeling. The insights
gained contribute to the optimization of PM2.5 forecasting
models, guiding future research in selecting or adapting
hybrid architectures based on specific data characteristics and
objectives.

TABLE 2. Parameter setting of CONV-LSTM.

Table 2 is a CONV-LSTM model with layers that almost
resemble CNN-LSTM, where the difference between these
two models is only in the combination of convolution and
LSTM layers. In the CONV-LSTM model, the LSTM archi-
tecture used is bidirectional concerning previous research,
wherein [100] predicted PM2.5 in Beijing using a hybrid
model, namely CONV-LSTM using bi-LSTM architecture,
to focus on studying the temporal correlation in PM2.5
concentrations. The parameters used in the compiling process
include using an optimizer with the Adam algorithm, the
learning rate initiated is 1e-5, and for the activation, the
function used ReLU with the loss function chosen is Huber
loss. The training process of CNN-LSTM and CONV-LSTM
models used an optimal epoch of 250 iterations. In addition,
using several testing schemes, including comparing the
number of neurons and batch size set at 32, applying
regularizers, and the number of LSTM layers used in
both models. After obtaining the optimal CNN-LSTM and
CONV-LSTM models, the following is a loss graph from the
training and validation process of both models based on four
data-splitting scenarios:

The results of CNN-LSTM and CONV-LSTM modeling
testing obtained the results of the loss graph as in Figure 6
shows that in the training process of the two models for each
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scenario, the loss value decreases in each iteration until a
stable point. There is no indication of overfitting because
there is no gap or considerable distance between the training
and validation loss values.

We use three evaluation metrics: Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE), for the assessment
of predictive model performance, which are defined as
Equation 10 to 12 where n as the number of observation,
Yi is the actual value and Ŷi is the predicted value.

MAE =
1
n

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣ (11)

RMSE =

√√√√1
n

n∑
i=1

(
Yi − Ŷi

)2
(12)

MAPE =
1
n

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣

Y
× 100% (13)

MAE serves as a direct measure, offering a clear gauge
of accuracy by assessing the average magnitude of errors
between predicted and actual values. RMSE introduces a
nuanced perspective by considering the square of errors,
which adds more weights to large errors. MAPE is
a relative measure, expressing the percentage difference
between predicted and actual values. This provides a
valuable insight into the proportional accuracy of the model.
The synergistic use of these metrics not only ensures a
precise evaluation of accuracy but also facilitates effective
comparisons across various models. This holistic evaluation
is pivotal in guiding the refinement and optimization of
predictive models, empowering researchers and practitioners
to make well-informed decisions regarding the suitability and
effectiveness of their models.

Based on the test conducted, Table 3 shows the results
of the model performance evaluation. Predicting PM2.5 con-
centrations using the CONV-LSTM method with scenario 4,
namely the 90:10 ratio data splitting, dominates the better
accuracy and efficiency of error values compared to the CNN-
LSTM method. Suppose we refer to one of the test data
metric evaluations, which is unseen data or data that has never
been seen by the model, namely the MAPE Test parameter,
in testing the accuracy and feasibility of the model. In that
case, CONV-LSTM has a more efficient model in making
predictions with a MAPE value of 16.39% when compared
to CNN-LSTM, with a MAPE value of 17.92%. Therefore,
CONV-LSTM is the model that will be used in predicting
PM2.5 concentrations in the Kemayoran area, Central Jakarta.
Categorizing MAPE values as ‘‘good enough’’ holds pro-

found significance, signifying the satisfactory performance of
the predictive model for practical applications. When MAPE
values attain the ‘‘good enough’’ classification, it assures
that, on average, the model’s predictions align acceptably
with actual values. The contextual importance of these values
is further emphasized through their comparison to industry

TABLE 3. Metric evaluation.

standards or guidelines. If the obtained MAPE values meet
or surpass established benchmarks, it signals that the model
aligns with industry expectations. However, in the absence of
specific benchmarks fromBMKG Indonesia to label forecast-
ing results as ‘‘good,’’ it underscores the need for a nuanced
evaluation and consideration of industry-specific precision
requirements. In essence, the categorization of MAPE values
serves as a valuable indicator of the model’s readiness for
practical deployment and decision-making, acknowledging
the current absence of predefined benchmarks from the
relevant authority.

After obtaining the best model based on metric evaluation,
forecasting is performed 24 hours for data on 22 June
2022 from 00:00 to 23:00. In the future using the CONV-
LSTM model. The forecasting results generated from the
CONV-LSTM model will then be descaled from the inverse
z-score based on equation 8. Here are the results of PM2.5
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FIGURE 6. Training & validation loss CNNLSTM (A) and CONV-LSTM (B).

concentration forecasting on 22 June 2022 from 00:00
to 23:00.

The results of forecasting PM2.5concentrations on 22 June
2022 have the highest levels of PM2.5concentrations worth
34.87µg/m3 in the early morning, where in the early morning
there are weather changes such as a decrease in temperature
and high humidity at night. The average PM2.5concentration
on the 22nd was 27.37 µg/m3, which shows that the air
quality in Kemayoran is still quite good, at a moderate level.
The prediction results also show differences during the day
and night, so a Diurnal pattern is identified.

Implementing data science in SDGs policy can directly or
indirectly focus data on becoming accurate information with

technological methods as automated as needed. Achieving
the 17 SDG goals requires support from all levels of society
with various disciplines and knowledge, especially data
scientists and collaborating academics/students. Besides,
the executive, legislative, and judiciary support makes the
position of science data can take its best place in contributing
to sustainable development.

Data science has become a tool to synergize the 17 SDG
goals as a form of implementation of sustainable and
equitable development in Indonesia. The recommendations
that need to be followed up are that achieving SDGs in
the making various strategic decisions/policies is inseparable
from the role of data and information processed by Data
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FIGURE 7. Nowcasting PM2.5 concentration 24 hours ahead on 22 June 2022 with confidence interval.

Scientists, which requires coordination, cooperation, synergy,
and partnership from each unit of related institutions in
fulfilling the goals and apologies of science data in achieving
SDGs in the Republic of Indonesia and establishing data
science as the spearhead in decision making of stakeholders
in the fulfillment and achievement of SDGs.

At its core, this research plays a pivotal role in the
accurate prediction of pollution indicators, serving as a
robust early warning system. This capability empowers
authorities to anticipate air pollution and optimize waste
management strategies proactively. The broader significance
of our work is clearly seen by its seamless alignment with
Sustainable Development Goal (SDG) indicator 11.6, aiming
to curtail adverse per capita environmental impacts through
advancements in air quality and waste management practices.
In line with the mission of BMKG (Badan Meteorologi,
Klimatologi, dan Geofisika), tasked with executing gov-
ernmental responsibilities in meteorology, climatology, air
quality, and geophysics, our research stands as a valuable tool.
Its outcomes can substantially assist in fulfilling these duties,
offering practical insights for the effective management of
pollution.

The hybrid model, seamlessly merging Convolutional
Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks, serves as a critical advancement in
bolstering early warning systems for air pollution. Specifi-
cally tailored for the vibrant landscape of Kemayoran, DKI
Jakarta, this model excels in capturing the intricacies of
the region’s air quality dynamics. The CNN component’s
acute spatial sensitivity allows for precise identification of
localized pollution sources and complex spatial patterns
inherent in a busy urban environment. Simultaneously, the

LSTM component adeptly navigates the temporal intri-
cacies of PM2.5 concentration time series data, crucial
for anticipating pollution fluctuations in a dynamic area
like Kemayoran. By integrating both spatial and temporal
aspects, the hybrid model provides a comprehensive analysis,
enhancing the accuracy of early warnings. Its adaptability to
the ever-changing conditions of Kemayoran, coupled with
the capacity for customization to local factors, positions
this model as an invaluable tool. Ultimately, the timely
and precise predictions furnished by the hybrid model
empower authorities to make informed decisions, implement
preventive measures, and optimize strategies tailored to
Kemayoran’s unique air quality challenges.

V. PRACTICAL IMPLICATION
Based on the findings described in the previous section,
we provide practical recommendations for predictive mod-
eling as a recommendation. Initially, ensure the data is
well-organized and consistent by identifying anomalies in the
observation data. Following this, employ spline interpolation
to fill in any missing data, thereby enhancing the overall
structure and completeness of the dataset.

Also scale the data with z-score so that it can help
keep the range of values of each PM2.5 concentration in
the dataset balanced where it is not too large or small.
Perform data splitting with various ratio scenarios like 60:40,
70:30, 80:20, 90:10 to find the ideal number of splits
for each algorithm in machine learning. It is essential to
perform hyperparameter building and testing both models
to produce good predictions. The model we employed
for forecasting PM2.5 concentration is CONV-LSTM, and
we’re comparing it to the CNN-LSRTM predictive method
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using the smallest metric evaluation measurement set
available.

The CONV-LSTM model emerges as a robust solution for
real-time PM2.5 nowcasting, offering a seamless integration
of spatial and temporal information. This model’s unique
combination of convolutional and LSTM layers showcases
exceptional proficiency in feature extraction, unraveling
intricate spatial patterns within the PM2.5 dataset. Notably,
the CONV-LSTM model excels in handling long-term tem-
poral dependencies, providing a nuanced understanding of
historical trends critical for precise nowcasting. Its predictive
accuracy surpasses that of the CNN-LSTMmodel, especially
in scenarios where both spatial and temporal factors play
significant roles in air quality dynamics. The model’s
adaptability to irregular time intervals in practical monitoring
scenarios further solidifies its reliability. Ultimately, the
CONV-LSTM model’s holistic approach and comprehensive
grasp of spatial-temporal dynamics put it as a formidable
tool for advancing PM2.5 nowcasting, particularly in regions
characterized by diverse and dynamic pollution sources.

The study establishes a groundwork for future research
in air quality modeling, inviting researchers to assess and
compare various hybrid models. This approach enables the
identification of the most effective strategies tailored to
diverse urban contexts, thereby contributing to the continuous
enhancement of air quality forecasting systems. The find-
ings resonate with broader implications, offering potential
advancements in accuracy, comprehension, and earlywarning
capabilities within urban air quality monitoring and forecast-
ing. The adoption of hybrid models, exemplified in the study,
emerges as a promising direction for navigating the intri-
cacies of urban air quality dynamics, promising substantial
improvements in pollution management effectiveness.

VI. CONCLUSION
This work has shown that both models, CNN-LSTM and
CONV-LSTM, are suitable for predicting PM2.5 concentra-
tions. At the time of splitting the data with several different
ratios, the division by 90:10 is the best ratio for both
CNN-LSTM and CONV-LSTM predictive models, with a
large enough training dataset for training various possible
patterns in PM2.5 concentration data and also with validation
set of sufficient size to evaluate the performance of the model
quite well. Indeed, the majority of training sets were large
enough to introduce the model to various possible patterns in
PM2.5 concentration data, and validation sets were also large
enough to evaluate the model’s performance.

The results by the CNN-LSTMmodel showedMAEworth
7.35, RMSE 9.32, and MAPE 17.92%. As for the CONV-
LSTMmodel, we obtainedMAEworth 6.52, RMSE 8.55 and
MAPE 16.39%. While both models produced MAPE values
that fall into the good enough range with values <20%,
the CONV-LSTM model obtained overall better metric
evaluation values.

However, this study has limitations in that it is known that
many factors cause PM2.5 concentrations, one of which is

meteorological factors that are not considered in this study.
For example, despite the fact that specific Kemayoran Jakarta
regions are more prone to air pollution, this study does not
consider meteorological impact on air quality in Kemayoran,
Jakarta. Therefore, in future research, it is expected to
forecast PM2.5 concentrations using several possible relevant
features, with the advantage of using convolutional neural
networks that can extract spatial features, making it possible
to use meteorological factors such as weather, wind speed,
wind direction, etc. at several different regional observation
points by modifying model hyperparameters such as the
number of layers, number of neurons, learning rate and other
parameters or can perform automatic hyperparameters in
PM2.5 prediction for real-time output with more efficient and
optimal model performance results.

The methodology in this study demonstrates the efficacy
of integrating data from diverse sources, including air quality
observations and meteorological data. Subsequent advance-
ments in research could investigate comparable data fusion
techniques to forecast additional atmospheric pollutants,
taking into account the accessibility and pertinence of a
variety of datasets.

Furthermore, for future research, it is recommended to
provide a detailed exploration of the architectural distinctions
between the CNN-LSTM and CONV-LSTM models, specif-
ically within the context of predicting PM2.5 concentrations.
Delving into the nuances of these models’ architectures
will contribute to a deeper understanding of their individual
strengths and weaknesses, enabling a more comprehensive
evaluation of their performance in air quality prediction.
This exploration could shed light on the specific features
or patterns each architecture excels at capturing, offering
valuable insights for refining and optimizing predictive
models in subsequent studies.

The superior performance of the CONV-LSTM model in
PM2.5 nowcasting opens up avenues for practical applications
in operational forecasting, early warning systems, and
decision support. Customization for specific urban environ-
ments, exploration of transferability to other pollutants, and
collaboration for further validation contribute to the model’s
real-world impact on air quality management.
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