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Abstract: Given a set of n disks in the plane, we study the problem of finding k lines that together
intersect the maximum number of input disks. We consider three variants of this problem with
the following constraints on the solution: (1) no constraint on the lines, (2) the k lines should be
parallel and (3) the k lines should pass through a common point. For k = 2, we give O(n3 log n)-time
algorithms for all three cases. For any fixed k ≥ 3, we give an O(n3k/2)-time algorithm for (1). For
variants (2) and (3), the running times of our algorithms vary from O(n4) to O(n6).

Keywords: computational geometry; geometric optimization; maximum coverage; partial hitting
sets; shape fitting; exact algorithm

1. Introduction

Given a set of n disks in the plane, we study the problem of finding k lines that together
intersect the maximum number of input disks. In other words, we want to maximize the
number of disks that intersect at least one output line. We study two other variants of this
problem, where the k output lines should be parallel, and where the k lines should pass
through a common point. The problems that we consider in this paper are the following.
(See Figure 1).

Problem 1 Problem 2 Problem 3

Figure 1. Examples of optimal solutions for Problems 1, 2 and 3 when k = 3.

Problem 1 (Maximum Coverage by k Lines). Given a set of n disks in the plane and a positive
integer k, find k lines that together intersect the maximum number of input disks.

Problem 2 (Maximum Coverage by k Parallel Lines). Given a set of n disks in the plane and a
positive integer k, find k parallel lines that together intersect the maximum number of input disks.

Problem 3 (Maximum Coverage by k Lines through a Point). Given a set of n disks in the
plane and a positive integer k, find k lines that together intersect the maximum number of input
disks and pass through a common point.
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In this paper, we give algorithms for the three above problems. We will assume that k
is a constant. A summary of our results is given in Table 1. In particular, for k = 1, Problem
1, 2 and 3 coincide, and we give an O(n2)-time algorithm. Given a set of points in the plane,
the problem of finding a line that covers the maximum number of points is 3SUM-hard [1],
so an O(nα)-time algorithm for any α < 2 is currently out of reach for Problem 1, 2 and 3,
even when k = 1.

Table 1. The running times of our algorithms for Problem 1, 2 and 3 for a constant k. Space usage is
O(n) if not explicitly stated.

Problem 1 Problem 2 Problem 3

k = 1 O(n2) time, O(n2) space

k = 2 O(n3 log n) time
O(n3 log n) time

O(n3 log n) timeO(n3) time,
O(n log n) space

k = 3 O(n3k/2) time O(n4) time

O(n5 log n) time

O(n5) time, O(n2)
space

k ≥ 4 O(n3k/2) time O(n4) time O(n6) time

Related Work

The one-dimensional version of our problem, where we want to find a set of k points
that intersect the maximum number of input intervals, is known as the partial interval hitting
set problem [2]. Jansen et al. [3] and Chrobak et al. [4] gave an O(kn2)-time algorithm.

Dumitrescu and Jiang [5] showed that the problem of hitting the maximum number of
input points with k lines is APX-hard. In this paper, we consider the more general problem
of hitting the maximum number of disks in the plane using k lines. To the best of our
knowledge, the problem of finding k lines that together intersect the maximum number of
input disks (or other geometric figures) has not been studied yet.

In the most general, combinatorial setting, we are given a collection of subsets of a
larger set, and we want to find k such subsets whose union is the largest. This problem
is known as the maximum coverage problem, and the simple greedy algorithm provides a
1 − 1/e approximation of the optimum [6]. Another maximum coverage problem was
studied by Jin et al. They considered the problem of covering a maximum number of input
points by k copies of the same rectangle or disk [7]. They provide linear-time approximation
schemes, and give references to related problems.

The combinatorics of intersections between lines and balls have also been studied. In
particular, Ha et al. showed that, for n disjoint spheres, if n ≥ 7, then at most three different
permutations of the spheres can appear along a line that crosses them all [8].

One motivation for studying maximum coverage by lines is to find line patterns in
a two-dimensional dataset. Input disks may represent data points, each given with an
imprecision that is equal to their radii. Other computational geometry problems have been
studied under this imprecision model, such as the Hausdorff distance [9], the Delaunay
triangulation [10] and the discrete Fréchet distance [11].

Our problem of finding line patterns is related to edge detection, which is a fundamen-
tal problem in image processing and computer vision, where the goal is to extract edges,
lines or junctions from images [12]. Therefore, our algorithms could find applications in 3D
reconstruction or image registration, by identifying the main lines or edges in the image.
Our algorithms for lines through a point, or parallel lines, could help find symmetries in
such an image.

Our algorithms could also be used for a facility location problem wherein one wants
to place line facilities that are close to a set of demand regions; for instance, we may want
to place k satellites at different orbits, that together cover the largest possible number of
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population centers. Line facility location has been studied by Cheung and Daescu, in the
context of weighted regions [13].

2. Preliminaries and Notations
2.1. Partial Interval Hitting Set

In Sections 4 and 5, we use a reduction to the partial interval hitting set problem [2].
Given a set of n closed intervals Ij = [sj, tj] for j = 1, . . . , n on the real line, and a positive
integer γ, the partial interval hitting set problem, shortly PIHS, is to find a set H of γ points
that together hit the maximum number of intervals. We say that a point q hits an interval I
if q ∈ I.

Chrobak et al. ([4] Section 3.1) gave a dynamic-programming algorithm for this prob-
lem which runs in O(γn2) time. Their algorithm uses O(n2) space for pre-computing O(n2)
values. We show in Section 6 that we can reduce the space usage to O(γn) while keeping
the same time bound. In addition, when γ = 2, we show that we can maintain the solution
for intervals with moving endpoints in O(n) time per event using O(n2) space.

2.2. Notations

We denote by D a set of n closed disks in the plane. We will consider that a point is
a disk of radius 0. We will assume that

⋂D = ∅, as otherwise, a trivial solution to our
problem is to take a line that intersects

⋂D.
The orientation θ of a line is the angle that it forms with horizontal. More precisely,

it is the angle swept from a horizontal line to ℓ in counterclockwise direction. Therefore,
we have θ ∈ [0, π). Given an orientation θ ̸= π/2, and a disk D ∈ D, the lowest line
with orientation θ that is not below any point of D is called the upper tangent to D with
orientation θ. Similarly, the highest line with orientation θ that is not above any point of D
is called the lower tangent to D with orientation θ. When θ = π/2, the upper tangent to D
is the leftmost vertical line that is not to the left to any point of D, and the lower tangent to
D is the rightmost vertical line that is not to the right to any point of D. A line is said to be
tangent to D if it is either the lower or the upper tangent to D for some orientation. A line
that is tangent to two different disks in D is called a common tangent of D.

Given a directed line ℓ⃗ in the plane, the orientation of ℓ⃗ denotes the angle swept from
the x-axis to ℓ⃗ in the counterclockwise direction. The orientation of a directed line is in
[0, 2π). Given a disk D and an angle θ ∈ [0, 2π), the directed line tangent to D with
orientation θ is the directed line with orientation θ that intersects the boundary of D and
that has no point of D to its right.

For a disk D and a line ℓ tangent to it, we refer to the process of rotating ℓ around D
while keeping it tangent to D as rotating ℓ tangentially around D.

We say that two disks D1 and D2 cross if D1 ∩ D2 ̸= ∅, and neither D1 ⊂ D2 nor
D2 ⊂ D1. In this case, D1 and D2 have two common tangents. Two disks in D have at most
four common tangents, which happens when D1 and D2 are disjoint and have a positive
radius. Two disks are said to be tangent if their boundaries intersect at exactly one point.
We allow disks to be points, and hence have radius 0.

3. Maximum Coverage by k Lines

Given a set D of n disks in the plane and a positive integer k, we would like to find k
lines that together intersect the maximum number of input disks. In this section, we give
efficient algorithms for this problem by reducing it to the problem of computing the depth
of a collection of boxes, which is related to Klee’s problem [14].

3.1. A First Algorithm

We begin with the observation below.
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Lemma 1. Let ℓ be a line tangent to a disk D ∈ D. Suppose that there is no common tangent
between D and any other disk in D. Then, there is a common tangent ℓ′ between two disks in D
such that any disk intersected by ℓ is intersected by ℓ′.

Proof. As there is no common tangent between D and any other disk in D, each disk in D
is either contained in D or contains D. There must be more than one disk contained in D, as
otherwise, D or the disk that it contains, if it exists, is a subset of

⋂D, which we assumed
to be empty (see Section 2.2), a contradiction.

There must be a pair of disks D1 and D2 that are both contained in D, and either cross
or are disjoint. Otherwise, the j disks contained in D would form a chain of inclusions
Di1 ⊂ Di2 ⊂ · · · ⊂ Dij , and we would have Di1 ⊂ ⋂D. This is a contradiction, as we
assumed that

⋂D = ∅.
We take ℓ′ to be a common tangent to D1 and D2. Then, ℓ′ intersects all the disks that

contain D1, and since ℓ only intersects these disks, the set of disks intersected by ℓ′ is a
superset of those intersected by ℓ.

It follows that we can choose the k lines of our solution to be common tangents between
disks in D:

Lemma 2. There exists an optimal set of k lines, each of which is a common tangent of D.

Proof. Let ℓ1 be a line in an optimal set of k lines. We translate ℓ1 in a direction orthogonal to
itself until it first becomes tangent to some disk D1 ∈ D. Let ℓ2 denote this translated line.

Suppose that there is a common tangent between D1 and some other disk in D. We
rotate ℓ2 tangentially around D1 until it first becomes a line ℓ3 tangent to some other disk
D2. Then, the set of disks intersected by ℓ3 contains the set of disks intersected by ℓ1.
Therefore, we can replace ℓ1 with ℓ3 in our optimal solution.

On the other hand, if there is no common tangent between D1 and any other disk in D,
then by Lemma 2, we can replace ℓ1 in our solution with a line ℓ′ that is a common tangent.
We repeat this process until all the lines in our solution are common tangents.

Therefore, the maximum intersection problem can be solved as follows. We first
compute all the common tangents of D. Among these O(n2) lines, we choose k of them and
count the number of disks that are intersected by the chosen lines. Then, we return the k
lines that intersect the largest number of disks. It takes O(n2k+1) time in total. In the two
sections below, we present more efficient algorithms.

3.2. Maximum Coverage by One Line

In this section, we assume that k = 1. We give an O(n2)-time algorithm to solve
the maximum coverage problem, which improves on the O(n3)-time algorithm described
above. By Lemma 2, we only need to find a common tangent of D that intersects the
maximum number of disks in D. Using the duality transformation, we can find an optimal
line and the set of disks intersected by this line in O(n2) time as follows:

Theorem 1. Given a set D of n disks in the plane, we can find a line that intersects the maximum
number of disks in O(n2) time.

Proof. We use a standard point-line duality transformation ([15] Chapter 8). A line ℓ : y =
ax − b in the primal plane corresponds to a point ℓ∗ = (a, b) in the dual plane. For a disk
D, let UD be the set of all upper tangents to D. Then, the set of points U ∗

D = {ℓ∗ : ℓ ∈ UD}
forms a curve in the dual plane. Analogously, we define VD to be the set of all lower
tangents to D and consider the curve V∗

D formed by the points {ℓ∗ : ℓ ∈ VD}. We compute
these two dual curves for all disks in D and compute the arrangement of them. As these
curves are algebraic curves of constant degree, their arrangement A has a O(n2) size, and
we can compute A in O(n2) time [16].
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Let D ∈ D. We rotate an upper tangent ℓ of D tangentially around D and update the
number of disks intersected by ℓ each time it becomes tangent to another disk, or ceases to
be tangent to it. In the dual plane, this simply means that we follow the dual curve U ∗

D in
A, and add or remove the disk corresponding to any dual curve that we cross. Therefore, it
can be achieved in O(1) time per vertex of A that is along U ∗

D, and an additional O(n) time
to find the number of disks that are intersected when we start rotating ℓ.

We perform the same traversal for each disk in D, and we perform it for lower tangents
as well. In total, it takes time O(n2) as A has a size O(n2). During this traversal, we record
the best line that was found so far, and we return it after all the traversals are completed.

3.3. Maximum Coverage by k ≥ 2 Lines

By Lemma 2, there is a subset D̄ = {D1, . . . , Dk} ⊆ D of size k and an optimal solution
ℓ1, . . . , ℓk such that each line ℓi is tangent to Di. We show that, if we know D̄, we are able to
find an optimal solution by reducing the problem to the depth problem [17]: Given a set of n
boxes in Rd, find a point p ∈ Rd that maximizes the number of boxes containing p. It is
known that the depth problem can be solved in O(n log n) time when d = 2 [18], and in
O(nd/2) time when d > 2 using linear space [17].

Lemma 3. Given a subset D̄ = {D1, . . . , Dk} ⊂ D of size k, we can find k lines ℓ1, . . . , ℓk
such that each line ℓi is tangent to Di and the number of intersected disks in D is maximized in
O(n log n) time when k = 2 and in O(nk/2) time when k ≥ 3.

Proof. We first show that finding k such tangent lines can be reduced to the depth problem.
For a disk D ∈ D̄, let ℓ⃗(θ) be the directed line tangent to D with orientation θ. Let D′ be
another disk in D \ D̄. While increasing θ from 0 to 2π, the tangent ℓ⃗(θ) intersects D′ in at
most two intervals of angles in [0, 2π]. We say that these intervals are induced by (D, D′).

For each disk D′ ∈ D \ D̄, we compute the intervals induced by (D, D′) for every
D ∈ D̄. Then, there are at most 2k such intervals corresponding to D′.

Let i ∈ {1, . . . , l} and let Si, S′
i be the intervals induced by (Di, D′), where S′

i is pos-
sibly empty. We associate to these intervals Si and S′

i the slab consisting of the points
(θ1, . . . , θk) ∈ [0, 2π]k such that min Si ≤ θi ≤ max Si, and if S′

i ̸= ∅, the slab consisting
of the points that satisfy min S′

i ≤ θi ≤ max S′
i . These slabs are orthogonal to the θi-axis.

As k = O(1), the union of these slabs for all disks in D̄ has constant complexity. More
precisely, the union of these slabs is the union of O(1) interior-disjoint boxes. (See Figure 2).
We replace the union of the slabs by these boxes.

θ2

θ12π

2π

D′

D2

D1
α

β

α′

α α′

β

Figure 2. (Left) a set of seven disks in the plane, where and k = 2, and D̄ = {D1, D2}. (Right) The
union of slabs induced by (D1, D′) and (D2, D′).

We repeat this for every disk D′ ∈ D \ D̄ and obtain O(n) boxes. Then, for any
sequence of angles (θ1, . . . , θk) of the directed tangent lines, the number of boxes containing
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(θ1, . . . , θk) is the number of disks in D \ D̄ intersected by the k tangent lines. Therefore,
finding an optimum solution for a fixed D̄ reduces to the depth problem for O(n) boxes.

One issue here is that we should count only once the boundary between two boxes
corresponding to the same disk D′, but in degenerate cases where the boundaries of two
boxes overlap, we need to count twice their common boundary. The maximum depth
algorithm by Chan [17] can handle this situation.

For every subset of k distinct disks of D, we find a set of k lines such that each line is
tangent to a different disk in this subset, and that together intersect the maximum number
of disks in D. Among those O(nk) sets of lines, we choose one with the largest number of
intersected disks, which is an optimal solution. It follows that:

Theorem 2. Given a set of n disks in the plane and a positive integer k, we can find k lines
that together intersect the maximum number of disks in D in O(n3 log n) time for k = 2 and in
O(n3k/2) time for k ≥ 3, using O(n) space.

4. Maximum Coverage by k Parallel Lines

Given a set D of n disks in the plane and an integer k ≥ 2, we would like to find k
parallel lines that together intersect the maximum number of disks in D. We first show that
this problem can be solved by reducing it to the partial interval hitting set problem. Then,
we show how to improve the running time for small k.

We begin with an observation about optimal sets of k parallel lines. Given an optimal
set {ℓ1, . . . , ℓk} of k parallel lines, it is always possible to translate a line of this optimal
solution so that the line becomes tangent to an input disk, while keeping the same set of
intersected disks. Therefore, we may assume that each line ℓi is tangent to a disk Di, for
i = 1, . . . , k.

For each i ∈ {1, . . . , k}, we may assume that there exists a common tangent between
Di and some other disk in D. Otherwise, for each D ∈ D \ {Di}, we must have D ⊂ Di or
Di ⊂ D. Therefore, without loss of generality, the disks D1, . . . , Dk form a chain of inclusion
D1 ⊂ · · · ⊂ Dk. In addition, all the other disks are either contained in D1 or contain Dk.
No disk in D \ {D1, . . . , Dk} can be contained in D1, as otherwise we could improve the
solution by translating ℓ1 until it crosses this disk. It follows that D1 =

⋂D, contradicting
our assumption that

⋂D = ∅.
We then rotate ℓi tangentially around Di simultaneously for all i = 1, . . . , k until one

of the k lines becomes tangent to another disk or ceases to be tangent to it. Let ℓ′1, . . . , ℓ′k
denote the k lines after the rotation. As the set of disks intersected by ℓ′i contains the set of
disks intersected by ℓi for all i = 1, . . . , k, we can replace our optimal set of parallel lines
with {ℓ′1, . . . , ℓ′k}. Thus we have the following observation.

Observation 1. There exists an optimal set of k parallel lines such that every line is tangent to an
input disk and at least one of them is a common tangent of D.

Once we know the direction of an optimal set of lines, we project the disks in D onto
a line orthogonal to this direction. We obtain n closed intervals on this line. The problem
of finding k lines with this orientation that intersect the maximum number of disks is
equivalent to the problem of finding k points that together intersect the maximum number
of intervals, which is the PIHS problem. In Section 6, Lemma 6, we show that it can be
solved in O(n2) time using O(n) space.

By Observation 1, we have O(n2) possible orientations. So we can solve the maximum
intersection problem by k parallel lines in O(n4) time as k is a constant. When k = 2,
we give two different algorithms which improve the running time and we provide a
space-time trade-off.
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Improvements for k = 2

Let D1 and D2 be two disks in D. Let ℓ1 and ℓ2 be two parallel lines such that ℓi is
tangent to Di for i = 1, 2. For i = 1, 2, we maintain an array of O(n) Booleans that records
for each disk in D whether it is intersected by ℓi, and we keep a counter for the number of
disks in D which are intersected by ℓ1 or ℓ2. Now we simultaneously rotate the two lines
tangentially around D1 and D2, respectively.

Whenever ℓ1 becomes tangent to a disk other than D1, an element of the boolean list
for ℓ1 needs to be updated and the number of intersected disks may change. The same
holds for ℓ2 and D2. We call this an event. As any two disks have at most 4 common
tangents, there are O(n) events in total. We precompute them, and sort them according to
the orientation of the common tangents that they correspond to in O(n log n) time.

For each event, the number of disks in D intersected by ℓ1 or ℓ2 increases or decreases
by at most one, and we can update the boolean lists and compute the number of intersected
disks in O(1) time. There are O(n) events in total, so it takes O(n) time.

We repeat this for every pair of disks in D and find an event where the number
of intersected disks is maximized. By Observation 1, the two parallel lines ℓ1 and ℓ2
corresponding to this event is an optimal solution. Thus, we obtain the following result.

Lemma 4. Given a set D of n disks in the plane, we can find two parallel lines that together
intersect the maximum number of disks in D in O(n3 log n) time using O(n) space.

We can improve the running time to O(n3) time using O(n log n) space as follows.

1. Let T = ⌊log n⌋. Partition the disks into ⌈n/T⌉ disjoint groups, each consisting
of T disks, except possibly the last group containing less than T disks. Let G =
{G1, . . . , G⌈n/T⌉} be the set of groups.

2. For every subset of S ⊆ G of size at most two,

(a) Let DS =
⋃ S . For each disk D ∈ DS , compute the sorted list of the other

disks in D intersected by the tangent line rotating around D in O(n log n) time.
It takes O(Tn log n) time for all disks in DS .

(b) For a fixed pair D1, D2 ∈ DS , we can find the maximum number of disks
intersected by ℓ1, ℓ2 in O(n) time as the ordering of the events has been
precomputed. So over all the pairs D1, D2 ∈ DS , it takes O(nT2) time to find
optimal lines ℓ1, ℓ2.

We consider O((n/T)2) subsets of G, and we spend O(Tn log n) + O(nT2) time for
each subset. Thus we spend O((n3 log n)/T + n3) time in total, which is O(n3) time.

Theorem 3. Given a set of n disks in the plane and a positive integer k, we can find k parallel lines
that together intersect the maximum number of disks in D in O(n4) time using O(n) space. For
k = 2, we can find such two parallel lines in O(n3 log n) time using O(n) space and in O(n3) time
using O(n log n) space.

5. Maximum Coverage by k Lines through a Point

Concurrent lines are lines that meet at a common point, called their concurrency point.
Given a set D of n disks in the plane and a positive integer k, we want to find k concurrent
lines that together intersect the maximum number of disks in D. We can solve this problem
in O(n2) time by Theorem 1 for k = 1.

For k = 2, a simple modification of the algorithm from Theorem 2 gives a solution in
O(n3 log n) time. The idea is the following. We use the plane-sweep algorithm by Asano
and Imai to compute the depth of our set of rectangles [18]. We need to rule out the
solutions consisting of two parallel lines, which correspond to points along the diagonal
x = y in our arrangement of rectangles. So at each event x = xi of the sweep, we add a
negative weight −2 to the point (xi, xi), which guarantees that it will not be returned as an
optimal solution.
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Therefore, we consider the case where k ≥ 3, and we make the assumption that no
two intersecting lines together intersect all the disks in D, as otherwise we can simply solve
the problem using our algorithm for k = 2.

Lemma 5. Suppose that no two intersecting lines together intersect all the disks in D. Then there
exists an optimal set of k lines for k ≥ 3 such that every line is tangent to an input disk and at least
two of them are common tangents of D.

Proof. Let L∗ = {ℓ∗1 , . . . , ℓ∗k} be an optimal solution to our problem. Let p∗ be their
concurrency point. When we rotate a line ℓ∗i about p∗, as ℓ∗i does not intersect all the
disks in D, it must at some point become tangent to a disk in D. So we rotate each line
ℓ∗i clockwise until it first becomes tangent to some disk in D, obtaining a line ℓi. Then
L = {ℓ1, . . . , ℓk} is still an optimal solution, and each line ℓi is tangent to a disk Di ∈ D.

We move the intersection point p =
⋂L along ℓ1, while rotating each ℓi, i ≥ 2

tangentially around Di. By our assumption, no line parallel to ℓ1 intersects all the disks in
D. So ℓi must become tangent to some disk in D \ {Di} at some point for every i ≥ 2. Let p′

be the point corresponding to the first such event, when p moves in either direction along ℓ1.
Then we obtain a new optimal solution L′ = {ℓ′1, . . . , ℓ′k} such that ℓ′j is a common tangent
of D for some j with 2 ≤ j ≤ k. If ℓ1 is a common tangent of D, we are done. Otherwise,
we apply the same argument as above to ℓ′j, obtaining a second common tangent.

By Lemma 5, there exists an optimal set of k lines whose concurrency point is the
intersection of two common tangents of D. For every pair of common tangents (ℓ, ℓ′), we
consider the point of intersection as a candidate for being the concurrency point of an
optimal solution. Thus we have O(n4) candidates for being the concurrency point of an
optimal solution.

Once we pick a concurrency candidate p, we can reduce our problem to the partial
interval hitting set problem. Let ℓ and ℓ′ be the two common tangents that intersect at p.
Without loss of generality, we assume that ℓ is parallel to the x-axis. Let D̄ be the set of
disks in D which are intersected by neither ℓ nor ℓ′. For every disk D in D̄, let ID ∈ [0, π)
be the interval of angles θ such that the line through p with orientation θ intersects D. Note
that ID is a closed interval in [0, π). Now we solve PIHS for these intervals ID for D ∈ D̄,
and γ = k − 2. Let Γ = {θ1, . . . , θk−2} denote an optimal solution for the problem. Let Lp
denote the set of k − 2 lines of orientation θ1, . . . , θk−2 passing through p. Since Lp is a set
of k − 2 lines that pass through p and that together intersect the maximum number of disks
in D̄, Lp ∪ {ℓ, ℓ′} is an optimal set of k lines if ℓ and ℓ′ are contained in an optimal solution.
Therefore, we can compute an optimal set of k concurrent lines by repeating this process
for every concurrency candidate.

For k = 3, we solve PIHS for γ = 1, so we need to find a point that hits the maximum
number of intervals, which can be done in O(n log n) time by a simple scan after sorting the
endpoints of the intervals. For k ≥ 4, Chrobak et al. ([4] Section 3.1) show that PIHS can be
solved in O(n2) time, and we show that it can be done using only O(n) space in Section 6.
Thus we can solve this problem in O(n5 log n) time and O(n) space for k = 3, and in O(n6)
time and O(n) space for k ≥ 4.

We now show how the running time can be reduced to O(n5) for k = 3, using O(n2)
space. Our approach is based on a result presented in Section 6 that shows how to update a
solution to PIHS for a set of intervals with moving endpoints where an event occurs when
two endpoints collide or separate. We show in Lemma 7 that the solution can be updated
in O(n) time per event.

Let ℓ denote a common tangent of D, and assume without loss of generality that ℓ
is parallel to the x-axis. We show that we can find two lines ℓ1 and ℓ2 such that their
intersection point lies on ℓ, and the number of disks in D intersected by {ℓ, ℓ1, ℓ2} is
maximized, in O(n3) time. As the set of disks intersected by ℓ does not change for a fixed
line ℓ, we do not take this set of disks into consideration.
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Let D̄ℓ denote the set of disks in D that do not intersect ℓ. For a point p on ℓ, let Ip
be the collection of intervals which are defined for D̄ℓ around p in the same manner as we
explained in the reduction step above. We solve PIHS for Ip and γ = 2, and let {θ1, θ2}
be the solution. Let ℓθ1 and ℓθ2 denote the two lines through p with orientations θ1 and θ2,
respectively. These two lines together intersect the maximum number of disks in D̄ℓ while
passing through p.

Now suppose that we move p along ℓ. The endpoints of the intervals in Ip will move
along the real line. A solution to PIHS changes only if an event occurs, as otherwise the
ordering of endpoints of the interval remains the same. The key point is that an event
occurs only if p is on a concurrency candidate for ℓ. The reason is that, for a point q ∈ ℓ,
there exists two intervals in Iq such that two endpoints from distinct intervals lie on the
same point if and only if there exists a line which passes through q and is tangent to two
disks in D.

There are O(n2) concurrency candidates along ℓ in total, and they can be precomputed
and sorted along ℓ in O(n2 log n) time. From the pairs of disks which determine each
concurrency candidate on ℓ, the corresponding event can also be found directly. We handle
all the events in order and store the best two lines, ℓθ∗1

and ℓ∗θ2
, which together intersect the

maximum number of disks in D̄ℓ. In Section 6, Lemma 7, we show how to handle each
event in O(n) time. Thus, we can find ℓθ∗1

and ℓ∗θ2
in O(n3) time in total.

We repeat this for every common tangent of D. By Lemma 5, there always exists an
optimal set of k lines such that one of the lines is a common tangent to two disks in D. Thus,
the best set of k lines found during the repetition is an optimal solution. Hence, we have
just proved the following theorem.

Theorem 4. Given a set of n disks in the plane and a positive integer k, we can find k lines that
pass through a common point and that together intersect the maximum number of disks in O(n6)
time using O(n) space. When k = 3, we can solve this problem in O(n5 log n) time using O(n)
space, and O(n5) time using O(n2) space.

6. On the Partial Interval Hitting Set Problem

As we mentioned above, given n closed intervals Ij = [sj, tj], j = 1, . . . , n on the real
line, and a positive integer γ, the partial hitting set problem is to find a set H of γ points on
the real line that together hit the maximum number of intervals. We say that a point q hits
an interval I if q ∈ I [2]. It is easy to see that, after shifting the solution points to the right
until they each meet a right endpoint, that we may assume that the points in the solution
are the right endpoints of γ input intervals.

Chrobak et al. ([4] Section 3.1) gave a dynamic-programming algorithm for this prob-
lem that runs in O(γn2) time. We give a sketch of their algorithm. First, it sorts the intervals
using their right endpoints and relabels them so that t1 ≤ t2 ≤ . . . ≤ tn. Let Th,b be the max-
imum number of input intervals that can be hit by a subset H ⊆ {t1, t2, . . . , tb} such that
|H| ≤ h and tb ∈ H, where h ∈ {1, 2, . . . γ} and b ∈ {1, 2, . . . , n}. Let wa,b be the number of
intervals Ii such that ta < si ≤ tb ≤ ti , namely the intervals that are hit by tb but not by ta.
We first set T1,b to the number of intervals that contain tb. Similarly, we set Th,1 to the num-
ber of intervals that contain t1. Then, for every h = 2, 3, . . . , γ and for every b = 2, 3, . . . , n,
we can compute Th,b using the recurrence relation Th,b = maxa<b{Th−1,a + wa,b}.

The output value is maxb Tγ,b. Chrobak et al. use O(n2) space as their algorithm
precomputes all values wa,b in time O(n2). We show how the space usage can be reduced
to O(γn) without increasing the time bound.

Lemma 6. Given n closed intervals on the real line, and a positive integer γ, we can find a set
of γ points on the line that together hit the maximum number of intervals in O(γn2) time using
O(γn) space.
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Proof. We first compute the sorted list of the interval endpoints in increasing order. We
let Th,1 be the number of intervals that contain t1 for h = 1, . . . , γ. These values can be
computed in O(n) time. For a fixed b with 1 < b ≤ n, Th,b can be computed for all
h = 1, . . . , γ in O(γn) time once Th,i and wi,b are computed for all h = 1, . . . , γ and all
i = 1, . . . , b − 1.

We show that wi,b+1 for all i = 1, . . . , b can be computed in (amortized) O(n) time
once wi,b is computed for all i = 1, . . . , b − 1. For any fixed b with 1 ≤ b < n, let Sb be the
number of intervals Ii such that tb < si ≤ tb+1, and let Eb be the number of intervals Ii such
that ti = tb. Let Ea

b be the number of intervals Ii such that ta < si < ti = tb. For any integers
a, b with 1 ≤ a < b ≤ n, wa,b+1 = wa,b + Sb − Ea

b . Thus, Sb and Ei
b for all i = 1, . . . , b − 1

must be computed in advance when we compute wi,b+1 from wi,b for all i = 1, . . . , b − 1.
By scanning the sorted list of interval endpoints, we can compute Sb in O(Sb) time and Ei

b
for all i = 1, . . . , b − 1 in O(n · Eb) time. So we can compute wi,b+1 for all i = 1, . . . , b − 1 in
O(Sb + n · Eb) time. Additionally, we set wb,b+1 = Sb.

For every b = 2 . . . , n, we compute wa,b for all a < b and then compute Th,b for all h. It
takes O(Sb−1 + n · Eb−1 + γn) time for every b = 2, . . . , n. As ∑b Sb = n and ∑b Eb = n, it
takes O(γn2) time in total using O(γn) space.

We now consider the case where the interval endpoints move along the real line, so
each endpoint p is given as a function p(t) of the time t ∈ R. For two intervals Ii and Ij
(i ̸= j), let p and q denote two endpoints such that p ∈ {si, ti} and q ∈ {sj, tj}. Let t0 ∈ R.
If p(t−0 ) ̸= q(t−0 ), that is, if for any t < t0 that is close enough to t0 we have p(t) ̸= q(t),
and then p(t0) = q(t0), we say that p and q collide. On the other hand, if p(t0) = q(t0) and
p(t+0 ) ̸= q(t+0 ), that is, if for any t > t0 that is close enough to t0 we have p(t) ̸= q(t), then
we say that p and q separate. We say that an event occurs when two endpoints collide or
separate. An event at time t0 is one of the following types:

(LL) Two points p and q, which are both left endpoints of intervals, collide or separate. (See
Figure 3a).

(LR) Two points p and q, where p is the left endpoint of an interval and q is the right
endpoint of another interval, satisfy p(t−0 ) < q(t−0 ) and collide at t0, or p and q
separate at t0 and p(t+0 ) < q(t+0 ). (See Figure 3b).

(RL) Two points p and q, where p is the right endpoint of an interval and q is the left
endpoint of another interval, satisfy p(t−0 ) < q(t−0 ) and collide at t0, or p and q
separate at t0 and p(t+0 ) < q(t+0 ). (See Figure 3c).

(RR) Two points p and q, which are both right endpoints of intervals, collide or separate.
(See Figure 3d).

(b)

(c) (d)

(a)

p

q

p

q

p

q

p

q

p

q

p

q

p

q

p

q

Figure 3. Types of events where two interval endpoints p and q collide or separate. (a) Type LL
(b) Type LR (c) Type RL (d) Type RR

Lemma 7. At each event, we can update an optimal solution to PIHS for γ = 2 in O(n) time after
O(n2)-time preprocessing using O(n2) space.
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Proof. Let W denote the table which stores all wa,b, and let T denote the table which stores
all Th,b. For γ = 2, we show that an event where two interval endpoints p and q collide
or separate can be handled in O(n) time so that all elements of W and T store correct
values reflecting the situation right after the event. We first assume that no three intervals
endpoints coincide at any time. At the end of this proof, we explain how to handle these
degenerate cases.

For an event of type LL or LR, the set of intervals which are hit by a right endpoint
does not change at all. Thus nothing in W and T needs to change.

For an event of type RL, let Ii and Ij be the two intervals involved in the event such
that ti = p and sj = q. Then at this event, the set of intervals that are hit by ti will change,
and the set of intervals hit by any other point does not change. The number of intervals hit
by ti increases by 1 for the case where p and q collide, and this number decreases by 1 for
the other case where p and q separate. It follows that among all T1,b for b = 1, . . . , n, T1,i
is the only element which changes. The update of T1,i can be done in O(1) time. Among
all T2,b for b = 1, . . . , n, however, more than one element can change. We show that we
can compute the changes in O(n) time in total. For both cases where the points collide or
separate, wa,b changes only if a = i or b = i in the following way. The value wa,i increases
or decreases by 1 for all a = 1, . . . , i − 1. The value wi,b increases or decreases by 1 if tb ≤ tj
for b = i + 1, . . . , n. Thus we can update W in O(n) time in total.

The observation that wa,b changes only if a = i or b = i implies that T2,b changes only
if T1,i + wi,b becomes larger than its original value for b = i + 1, . . . , n. This can be checked
in O(1) time for every b = i + 1, . . . , n once T1,i and wi,b were computed. Using additional
O(n) time, we update T2,i using the recurrence relation. Thus we can update T in O(n)
time in total. Then we can report a new solution by computing maxb T2,b.

For an event of type RR, let Ii and Ij be the two intervals involved in the event such
that ti = p, tj = q, and p < q holds right after the event if p and q separate at this event. If
i > j, which happens only for the case where p and q separate, we just switch the labels of
two intervals so that i < j holds. Then Ij is the only interval such that the set of intervals
which are hit by its right endpoint changes by this event. The size of the set increases by 1
for the case where p and q collide, and the size of the set decreases by 1 for the case where
p and q separate. It follows that among all T1,b for b = 1, . . . , n, T1,j is the only element
which changes. The update of T1,j can be done in O(1) time. Among all T2,b for b = 1, . . . , n,
however, more than one element can change. We show that we can compute the changes
in O(n) time in total. For both cases where points collide or separate, wa,b changes only
if b = j. More precisely, the value wa,j increases or decreases by 1 if ta < si. Thus we can
update W in O(n) time in total.

The observation that T1,j is the only element which changes among all T1,b for b =
1, . . . , n implies that T2,b changes only if T1,j + wj,b becomes larger than its original value
for b = j + 1, . . . , n. This can be checked in O(1) time for every b = j + 1, . . . , n once T1,j
and wj,b were computed. Using additional O(n) time, we update T2,j using the recurrence
relation. Thus we can update T in O(n) time in total. Then we can report a new solution
by computing maxb T2,b.

We now explain how to handle degenerate cases where more than 2 endpoints collide
or separate at the same time t. So we have several events of the type LL, LR, RL or RR
occurring at time t. In this case, we first separately handle in an arbitrary order each of the
events where two points collide, in the way that is described above. Then we obtain the
solution at time t with maximum coverage. After this, we handle in an arbitrary order all
the events where two points separate at time t.

7. Discussion and Conclusions

We addressed the problem of finding k lines that together intersect the maximum
number of input disks. We considered two other variants, where the k output lines should
be parallel, and where the k lines should pass through a common point. We presented the
first algorithms for these problems.
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For k = 1, the three problems coincide, and we give an O(n2) time algorithm by
applying a geometric dualization. As this problem is 3SUM-hard even for covering points,
an O(nα)-time algorithm for any α < 2 is currently out of reach.

For the problem of finding k ≥ 2 lines that together intersect the maximum number of
input disks, we first show that there exists an optimal set of k lines, each of which is tangent
to two input disks. Using this observation, we show that the problem can be reduced to the
problem of computing the depth of a set of boxes. The running time of our algorithm is
O(n3 log n) when k = 2 and is O(n3k/2) time when k ≥ 3.

For the problem of finding k parallel lines that together intersect the maximum number
of input disks for k ≥ 2, it can be reduced to the Partial Interval Hitting Set problem once
the direction of the output lines is fixed. We first give O(n4)-time algorithm by observing
that there exists an optimal set of k parallel lines such that every line is tangent to an input
disk and at least one of them is tangent to two input disks in D. Then we reduce the time
complexity when k = 2, at the expense of increasing the space usage by a logarithmic factor.

Our results are the first nontrivial results of these three problems, which are maximum
coverage problems in geometric settings. One natural question is to extend our results to
other geometric settings, for instance to covering balls by lines in R3. Another possible
direction for further work is to consider approximation algorithms. The maximum coverage
problem for arbitrary sets is known to be NP-hard, and the straightforward greedy algo-
rithm gives a (1 − 1/e)-approximation of the optimum. Can we find better approximation
algorithms in geometric settings?
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