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Machine‑learning‑based 
diagnosis of thyroid fine‑needle 
aspiration biopsy synergistically 
by Papanicolaou staining 
and refractive index distribution
Young Ki Lee 1,9, Dongmin Ryu 2,9, Seungwoo Kim 3,9, Juyeon Park 4,5, Seog Yun Park 6, 
Donghun Ryu 4,5,7, Hayoung Lee 1, Sungbin Lim 8, Hyun‑Seok Min 2*, YongKeun Park 2,4,5* & 
Eun Kyung Lee 1*

We developed a machine learning algorithm (MLA) that can classify human thyroid cell clusters 
by exploiting both Papanicolaou staining and intrinsic refractive index (RI) as correlative imaging 
contrasts and evaluated the effects of this combination on diagnostic performance. Thyroid fine‑
needle aspiration biopsy (FNAB) specimens were analyzed using correlative optical diffraction 
tomography, which can simultaneously measure both, the color brightfield of Papanicolaou staining 
and three‑dimensional RI distribution. The MLA was designed to classify benign and malignant 
cell clusters using color images, RI images, or both. We included 1535 thyroid cell clusters (benign: 
malignancy = 1128:407) from 124 patients. Accuracies of MLA classifiers using color images, RI images, 
and both were 98.0%, 98.0%, and 100%, respectively. As information for classification, the nucleus 
size was mainly used in the color image; however, detailed morphological information of the nucleus 
was also used in the RI image. We demonstrate that the present MLA and correlative FNAB imaging 
approach has the potential for diagnosing thyroid cancer, and complementary information from color 
and RI images can improve the performance of the MLA.

Thyroid nodules are common in the general population, and some advance to thyroid cancers that require 
 surgery1. Thyroid fine-needle aspiration biopsy (FNAB) is the most important preoperative diagnostic modality 
for distinguishing between benign and malignant thyroid  nodules1. The detection of thyroid nodules and the 
frequency of thyroid FNAB has increased significantly worldwide with the increasing utilization of diagnostic 
imaging  modalities2–5. Evaluation of FNABs is still hindered by multiple challenges, including dependence on 
highly skilled cytopathologists, and interobserver variability, which is further complicated by the quality of image 
data presented for interpretation.

Recently, machine learning algorithms (MLAs) are increasingly being applied to medical imaging and tumor 
pathology and are expected to become a promising tool that can help reduce the time required for diagnoses by 
experts or increase the diagnostic accuracy of thyroid  FNAB6,7. Recently, MLAs have shown high overall accuracy 
in diagnosing thyroid cancer using digital imaging of thyroid FNAB  specimens8 and have well distinguished 
benign and malignant nodules from the indeterminate ones, with surgically proven pathological  diagnosis9,10. 
Nevertheless, MLA-based diagnostic tools for thyroid FNAB have not yet been commercialized, with further 
studies being required before they can be applied in the clinical  field11.
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Interestingly, the recent improvements in the performance of MLAs have advanced algorithms for thyroid 
FNAB, making it possible to classify the given digital medical imaging data more  effectively7,8,12,13. However, 
the method for acquiring digital data and the retrieval of imaging information to be utilized for MLAs from 
thyroid FNAB specimens has been poorly studied and neglected, despite being an important determinant of 
MLA performance. Most previous studies have used color monolayer images of Papanicolaou-, Giemsa-, and 
hematoxylin–eosin-stained specimens or morphometric parameters calculated from these  images7,8,13. The 
advantage of using these images is that they are relatively easy to obtain, clinicians are familiar with them, and 
they represent the current standard of practice. However, whether these are the best digital data for accurately 
diagnosing thyroid cancer through MLA remains unclear.

To maximize the advantages of MLAs, high-quality, high-resolution, and high-content images are  required14,15. 
This is a prerequisite for correctly assessing the characteristics of suspicious FNABs. The aim of this study was 
to pursue a higher content of cytopathology end-points and evaluate the potential of diagnoses using standard 
thyroid FNAB brightfield microscopy images combined with an emerging quantitative phase imaging technique 
(QPI). QPI exploits the intrinsic refractive index (RI) distribution of cells and tissues as quantitative label-free 
imaging  contrast16,17. RI images can show complementary and synergistic features to brightfield microscope-
based color images for the same cells or tissues due to the differences in imaging  methods18. RI images provide 
structural or morphological information of cellular or subcellular  structures17,19–21, whereas brightfield images 
of Papanicolau-stained slides provide molecular-specific  information22. More importantly, RI is a quantitative 
and reproducible quantity; it is a physical feature that remains constant regardless of the venue from where it is 
obtained. Therefore, obtaining high quality images less dependent on sample preparation and  working23–25. In 
this study, we trained and tested an MLA to distinguish between benign and malignant thyroid cell clusters using 
digital color- and RI-images of Papanicolaou-stained thyroid FNAB specimens. Furthermore, we investigated 
whether the information from RI images could improve the accuracy of the MLA by supplementing information 
from color images for the same specimens.

Materials and methods
Thyroid cell cluster specimens. We performed a single-center cross-sectional study of thyroid cell clus-
ters obtained via thyroid FNAB from benign or malignant human thyroid nodules. Thyroid FNAB slides pro-
duced from July 1, 2020, to December 31, 2020, were selected from the medical database of the institution. A 
benign case was defined as a case in which the FNAB result was “benign (II)” according to The Bethesda System 
for Reporting Thyroid Cytopathology (TBSRTC)26. A malignant case was defined as a case in which the FNAB 
result was “suspicious for malignancy (TBSRTC V)” and was confirmed to be papillary thyroid carcinoma using 
surgical specimens or the result was “malignant (TBSRTC VI)”. One Papanicolaou-stained liquid-based cytology 
smear slide per patient was selected. An expert pathologist reviewed each slide and randomly selected up to 20 
thyroid cell clusters per slide. Cell clusters were excluded when (a) they originated from thyroid cancer but did 
not contain cells with characteristics of malignancy or (b) the quality of digital images obtained from them was 
insufficient for analyses.

Image acquisition and processing. For each thyroid cell cluster, one two-dimensional color photograph 
and one three-dimensional RI tomograph were simultaneously acquired using the optical diffraction tomogra-
phy (ODT) system equipped with a brightfield imaging acquisition module. For this study, we built a correla-
tive ODT system by modifying an existing ODT system (HT-2H, Tomocube Inc., Daejeon, Republic of Korea) 
(Fig. 1a). Three-dimensional RI tomograms were then converted into two-dimensional RI images by projection 
along the Z-axis, to synchronize the model structure with that of color images.

Due to the varying sizes of thyroid cell clusters, using the predicted information from the fixed-size small 
regions of interest (patches) extracted from the images of clusters is more efficient. Therefore, each image con-
taining a cluster was divided into numerous 256 × 256-pixel (26.1 μm × 26.1 μm) patches. Each patch overlapped 
adjacent patches by 128 pixels in one direction. The average count of the color image value was calculated for 
each patch, and we found that the patch with average counts of color image ≥ 170 generally contained a whole 
or a part of clusters within the patch. These patches were used as the smallest unit for analysis in this study; the 
patches with an average count of color image ≥ 170 containing only background materials were included without 
manual exclusion to increase generality.

MLA training and testing. The cluster and patch images were divided into training, validation, and test 
datasets for the deep learning models with respect to the ratio of malignancy over dataset. Images generated 
from one cluster were categorized together while dividing the dataset (i.e. patch images from the same cluster 
were included in either training, validation, or test datasets in batches).

The architecture of the MLA comprised two levels: patch-level and cluster-level (Fig. 1b). The detailed struc-
ture of the system is described separately (Supplementary Text 1, 2). Briefly, we first trained the MLA for patches 
in the CNN architecture (DenseNet-169) on a binary classification task to identify patches extracted from malig-
nant cell clusters. Color images and RI images were used separately to generate two patch-level MLAs (color-
model and RI-model) (Fig. 1c). Consequently, the trained patch-level classification model generated a malignancy 
prediction heatmap for each cluster. The features of each cell cluster were extracted based on the heatmap, and 
a final tree-based cluster-level classification model XGBoost classifier was trained using these features (Fig. 1d). 
MLA models were generated using only color images (color-model), only RI images (RI-model), or both the 
types of images together (combined model), and their diagnostic performance was evaluated and compared based 
on the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.
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Explanatory analysis. Details of the explanatory analyzes are described separately (Supplementary Text 3, 
4). Briefly, we used gradient-weighted class activation mapping (Grad-CAM) to interpret the MLA classification 
process. Grad-CAM emphasized the local features of the points wherein MLA judges malignancy. Additionally, 
patch images were grouped based on the prediction score of patch-level MLA (i.e., how highly the MLA judged 
the probability that a given patch was extracted from a malignant cluster) or using t-distributed stochastic neigh-
bor embedding (t-SNE) analysis. In each group, the sizes of the nucleus and the degree of detail of the images 
around the nucleus were evaluated. The degree of detail of the images was quantitatively evaluated using the 
Brenner gradient.

Ethics statement. This study was conducted according to the guidelines of the Declaration of Helsinki and 
was approved by the institutional review board of the National Cancer Center (IRB number: NCC2020-0126), 
which waived the requirement for informed consent for this study.

Results
Patients and specimens. Overall, 1,535 thyroid cell clusters obtained from 124 patients were included 
in this study (Table 1, and Supplementary Table 1). The numbers of benign and malignant clusters were 1,128 
(73.5%) and 407 (26.5%), respectively. Cell clusters were divided into training (n = 988), validation (n = 261), and 
test (n = 286) datasets, and the ratio of the benign and malignant clusters in each dataset was maintained similar 
to the ratio in the entire dataset.

Model performance. Due to the training of the patch-level classification model, the color-model showed 
an accuracy of 0.975, which was better than that of the RI-model (0.937) (Table 2 and Supplementary Fig. 1). 
False negatives accounted for a considerable amount (3.75% of the total count) of the overall classification results 
of the patch-level RI-model. Most false-negatives were accounted for patches with noise or artifacts caused by 
the staining process.

Figure 1.  Overall scheme of the research. (a) Two types of images (color and RI images) of thyroid cell clusters 
were taken from cytology slides using the ODT system equipped with a brightfield microscope. (b) Each cluster 
image was then patched into 256 × 256-pixel patches to train the patch-level malignancy classification model. 
(c) The resulting patch-level classification models were used to generate a malignancy prediction map for each 
cluster to extract features to train the cluster-level model. (d) The resulting model outputs the malignancy of the 
cluster.
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In the cluster-level classification, the combined model using information from both types of images showed 
an accuracy of 1.000 (perfect classification of benign and malignant clusters), which was higher than that of the 
models using only a single imaging modality (0.980 for the color-model, and 0.980 for the RI-model).

We also conduct experiments on different MLA models on cluster-level classification including Random 
Forest, Support Vector Machine and Multi-layer Perceptron. We can confirm the robustness of performances on 
different models and the relationship between color and RI images. The model performances are summarized 
in Supplementary Table 3.

Gradient‑weighted class activation mapping. Grad-CAM results of the selected patches are presented 
in Fig. 2. The overlay image showed that the color-model and RI-model focused on distinct areas for the same 
specimen. Activation of the color-model mainly appeared in large-sized nuclei, indicating that a patch is highly 
likely to be classified as a malignancy in the presence of large-sized nuclei. In contrast, the RI-model showed 
high activation in the nuclei with high image gradients and relatively clear intranuclear structures.

Image characteristics according to model prediction scores. Patch images according to the pre-
diction score of the patch-level model were visualized and analyzed to demonstrate the differences in trends 
between the color-model and RI-model (Fig. 3). The correlation between the size of the nuclei and the prediction 
score was prominent in the color-model (the larger the nucleus, higher the probability of malignancy) but was 
less pronounced in the RI-model.

The degree of details of the images surrounding the nuclei quantified using the Brenner gradient was high 
when the prediction score of the RI-model was either very high (0.8–1.0) or very low (0.0–0.2), whereas the 
model confidence was high. This finding indicates that the more detailed the shape around the nucleus, the more 
clearly the cells could be distinguished, whether benign or malignant and that the RI-model performed clas-
sification by focusing on the detailed structure of the nuclei. In contrast, the relationship between the prediction 
score and Brenner gradient was not obvious for the color-model.

T‑distributed stochastic neighbor embedding analysis. t-SNE analysis was performed for patch-
level models to observe the patch grouping of each model (Fig. 4). t-SNE analysis of the color-model led to 
grouping according to nucleus size (Fig. 4a). As a result of RI-model analysis, grouping according to nucleus size 
was still observed, but the RI model’s group boundaries were ambiguous when compared to those of the color-
model (Fig. 4b). In many cases, viewing the detailed structure of the patch was difficult when the sample was on 
the boundary region in the t-SNE plot of the RI model. However, when both the color- and RI-models were used 
together, the benign and malignant groups were more distinctly separated (Fig. 4c).

Discussion
In this study, a combination of RI image data and color Papanicolaou-stained image data improved the accuracy 
of MLA for diagnosing cancer using thyroid FNAB specimens. The classification results of the MLA using color 
Papanicolaou-stained images were highly dependent on the size of the nucleus, but those of the MLA using RI 

Table 1.  Dataset description. The number of clusters and patches for the training, validation, and test dataset. 
The dataset is categorized with respect to the ratio of benign and malignant clusters while maintaining the 
overall class ratio. The splitting ratio of training, validation and test dataset of patch dataset is 0.64:0.17:0.18, 
where the ratio of cluster dataset is 0.63:0.17:0.19.

Benign Malignancy Total

Clusters Patches Clusters Patches Clusters Patches

Train set 721 (73.0%) 9315 (63.0%) 267 (27.0%) 5480 (37.0%) 988 14,795

Validation set 191 (73.2%) 2312 (57.3%) 70 (26.8%) 1721 (42.7%) 261 4033

Test set 216 (75.5%) 2888 (63.8%) 70 (24.5%) 1642 (36.2%) 286 4530

Total 1128 (73.5%) 14,515 (62.1%) 407 (26.5%) 8843 (27.9%) 1535 23,358

Table 2.  Results table. The performance of algorithms for patch-level and cluster-level classification is 
presented. RI, refractive index; PPV, positive predictive value; NPV, negative predictive value. Clusters that 
have less than five patches were excluded in the result table.

Prediction Confusion matrix

Accuracy Sensitivity Specificity PPV NPV True negative False positive False negative True positive

Patch-level classification
Color 0.975 0.969 0.978 0.962 0.983 2838 (62.6%) 63 (1.39%) 50 (1.10%) 1579 (34.9%)

2D RI 0.937 0.900 0.959 0.929 0.941 2718 (60.0%) 117 (2.58%) 170 (3.75%) 1525 (33.7%)

Cluster-level classification

Color 0.980 0.929 1.0 1.0 0.980 181 (72.1%) 0 (0%) 5 (1.99%) 65 (25.9%)

2D RI 0.980 0.957 0.989 0.971 0.980 179 (71.3%) 2 (0.80%) 3 (1.20%) 67 (26.7%)

Combined 1.0 1.0 1.0 1.0 1.0 181 (72.1%) 0 (0%) 0 (0%) 70 (27.9%)
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images were less dependent on nucleus size and were affected by information around the nuclear membrane. The 
final algorithm using data from both types of images together distinguished thyroid cell clusters from benign 
thyroid nodules and PTC with 100% accuracy.

MLA has shown superior diagnostic performance using images of thyroid FNAB specimens when a con-
volutional neural network (CNN) architecture was adopted, which is effective for image  analysis7,8,12,13. Guan 
et al.13 studied a CNN-based MLA for classifying hematoxylin–eosin-stained FNAB specimens of benign thyroid 
nodule and PTC (TBSRTC II, V and VI). A total of 887 fragmented color images were used in this study, which 
were cropped from 279 images taken using a digital camera attached to a brightfield microscope. The trained 
algorithm exhibited 97.7% accuracy for distinguishing between 128 test images of benign and malignant nod-
ules. Range et al.8 used MLA to classify Papanicolaou-stained FNAB specimens of broader spectrum thyroid 
nodules (TBSRTC II–VI). They used 916 color images obtained using a whole slide scanner. The trained MLA 
distinguished malignant from benign nodules with high accuracy (90.8%), comparable to that of a pathologist. 
Similarly, a CNN-based MLA performed well in our study, exhibiting high-accuracy patch-level classification 
(97.3%) and cluster-level classification (99.0%), using only color Papanicolaou-stained images.

However, given that the purpose of FNAB is to determine whether to operate on thyroid nodules, it must not 
only exhibit high overall accuracy, but also minimize serious misclassification, such as classification of an obvious 
malignancy as benign or that of an overtly benign nodule as a malignancy. In Guan’s study, MLA misclassified 
some cases that a pathologist classified as obviously benign as a malignancy. Similarly, in Range’s study, MLA 
misclassified some clearly benign nodules as malignant or misclassified a malignant nodule that was indicated 
for surgery as  benign8. These issues are problematic because they can lead to an erroneous treatment plan for 
patients who would receive proper treatment if they underwent the current standard care. We studied nodules 
with relatively distinct benign or malignant characteristics (TBSRTC II, V, and VI). Our findings that RI data 
improved the accuracy of MLA in these nodules have important clinical significance since these indicate a 
potential reduction in the aforementioned serious misclassification.

Guan et al.13 suggested that the significant misclassifications of MLA for the thyroid FNAB specimens could 
be related to the nucleus size. In their study, the cells in false-positive cases showed large nuclei with a high 

Figure 2.  GradCAM of the patch-level classification model. Patch-level model visualizations of (a) malignant 
and (b) benign patches, using GradCAM for color patch images and 2D RI patch images. Red color in the 
GradCAM indicates a high gradient. Different peaks in the GradCAM of the color patch model and the 2D RI 
patch model show that the two models focus on different features of the cellular images.
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mean pixel color information similar to malignant cells, but the pathologist determined that these cells had a 
typically benign morphology. The authors interpreted that the classification of MLA was based on the size and 
staining of the nucleus, but not on the shape. Furthermore, in our results, MLA based on color images showed 
limitations in accurately classifying benign thyroid cells with a large nucleus or malignant thyroid cells with a 
small nucleus because the size of the nucleus was the main feature required for classification. However, MLA 
classification based on the RI image was less affected by nucleus size. This suggests that RI images for can com-
pensate for the limitations of MLA using color images for FNAB specimens whose nuclear size is not typical for 
benign or malignant cells.

Further results from analyses to explain the models suggest that RI-image based MLA uses the structure 
and shape of the nucleus for classification. In addition to the algorithm being activated mainly for large nuclei 
in color images, the algorithm was activated not only by large nuclei but also by nuclei with a clear structure 
in RI images. The certainty of the MLA classification results was proportional to the detail of the information 
around the nuclear membrane when based on RI images, but not when based on color images. Detailed nuclear 
structures, such as nuclear membrane irregularity and micronucleoli are important indicators of thyroid cancer 
 diagnosis26. Thus, the accuracy of MLA classification can be improved when such information is incorporated.

Another potential strength of RI images is the integration of information of a wide vertical space. In a thyroid 
cytology specimen, cells are scattered over a wide vertical space (i.e. multiple z-plains) rather than over a plane. 
A single layer (z-plain) 2D image cannot address this vertical spread, and information from out-of-focus cells is 
likely to be lost or distorted. In contrast, in the RI image obtained through ODT, cells located in different Z-plains 
are in focus simultaneously. In our study, MLA based on color images showed a false positive result for some 
out-of-focus patches, whereas MLA based on RI image showed a true negative result for the same image patches 

Figure 3.  Representative patches with different prediction scores. Frequency histograms of the classification 
scores for (a) the color image and (b) 2D RI image patches from 0 to 1 with an interval of 0.05. In the five groups 
classified using 0.2 point-intervals of the classification scores, the representative images, mean nuclear area, and 
mean Brenner gradient are presented. The corresponding red and blue boxes are patches from the malignant 
and benign clusters, respectively. The mean nucleus area and mean Brenner gradient were calculated using 30 
randomly chosen samples for each interval.
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(data not shown). However, the out-of-focus area is only a part of the color images, and the use of multiple z-plane 
images did not improve the accuracy of MLA when compared to the use of a single z-plane image in a previous 
 study8. Therefore, it is unclear whether the aforementioned factor significantly affects the accuracy of MLA.

This study has certain limitations. Despite the large number of sample measurements, this study was per-
formed in a single center and could not cover all conditions of specimens that could exist in real clinical envi-
ronments. ODT provides optimal RI imaging in un-manipulated living  cells27, but we obtained RI images from 
chromatically stained cells. Staining acted as an extrinsic noise or artifact in the RI images, which reduced the 
accuracy of MLA. Further study is required to determine the effect of staining on the outcomes. Finally, up to 
30% of FNABs may have “indeterminate” cytopathology (TBSRTC III and IV). This study targeted specimen 
characteristic of benign or malignant thyroid nodules (TBSRTC II, V, and VI), and therefore, the currently trained 
algorithm cannot be directly applied to TBSRTC III and IV specimens without relevant training.

To investigate the complementary nature of RI images and color images, a 2D MIP image was generated by 
projecting the 3D RI image along the z-axis, thereby excluding the influence of dimensionality. Previous studies 
in the field of cell classification have demonstrated improved performance when using 3D RI images compared 
to 2D  images28,29. Although our research did not incorporate 3D images due to the specific research objectives, 

Figure 4.  tSNE analysis: t-SNE analysis of Papanicolaou-stain and the RI patch-level model. (a) Papanicolaou 
stain patches showed distinct grouping. Each group showed different sizes and shapes of the nucleus. (b) RI 
patches showed relatively weak grouping while still showing a difference in nucleus size and shape for each 
group. In the grey area of the tSNE map, observing detailed structures in the RI patch was difficult. (c) When 
both the Papanicolaou staining and RI images were used together, the benign and malignant groups could be 
more distinctly separated.
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we plan to expand our investigations in future studies by incorporating 3D RI images and other 3D imaging 
modalities.

In this study, we demonstrated the efficacy of multiplexing of RI with standard brightfield imaging using a 
single ODT platform for MLA-based classification of benign and malignant thyroid FNABs. Multiplexed ODT 
showed promise for the development of a more accurate classification of thyroid FNABs while reducing the 
inherent uncertainty and error observed in the current diagnostic standards. Thus, an ODT-based MLA may 
potentially contribute to an improved cost-effective and rapid point-of-care management of thyroid malignancies.

Data availability
The datasets used and/or analysed during the current study available from the corresponding authors on rea-
sonable request.
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