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Abstract

The Michaelis–Menten (MM) rate law has been the dominant paradigm of modeling bio-

chemical rate processes for over a century with applications in biochemistry, biophysics, cell

biology, systems biology, and chemical engineering. The MM rate law and its remedied form

stand on the assumption that the concentration of the complex of interacting molecules, at

each moment, approaches an equilibrium (quasi-steady state) much faster than the molecu-

lar concentrations change. Yet, this assumption is not always justified. Here, we relax this

quasi-steady state requirement and propose the generalized MM rate law for the interac-

tions of molecules with active concentration changes over time. Our approach for time-vary-

ing molecular concentrations, termed the effective time-delay scheme (ETS), is based on

rigorously estimated time-delay effects in molecular complex formation. With particularly

marked improvements in protein–protein and protein–DNA interaction modeling, the ETS

provides an analytical framework to interpret and predict rich transient or rhythmic dynamics

(such as autogenously-regulated cellular adaptation and circadian protein turnover), which

goes beyond the quasi-steady state assumption.

Author summary

The Michaelis–Menten (MM) rate law has enjoyed for over a century the status of the de

facto standard of modeling enzymatic reactions. Despite its simple and intuitive interpre-

tation for a wide range of applications in biochemistry, biophysics, cell biology, systems

biology, and chemical engineering, the MM rate law and its modified form stand on the

quasi-steady state assumption, which is not necessarily justified under active molecular

concentration changes over time. Here, we relax this assumption and propose the general-

ized MM rate law where the effective time delay in molecular complex formation comes

into pivotal play. This scheme allows the analytical interpretation and prediction of
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various biochemical processes with transient or rhythmic dynamics, opening a new ave-

nue of applications beyond the previous approaches.

Introduction

Since proposed by Henri [1] and Michaelis and Menten [2], the Michaelis–Menten (MM) rate

law has been the dominant framework for modeling the rates of enzyme-catalyzed reactions

for over a century [1–4]. The MM rate law has also been widely adopted for describing other

bimolecular interactions, such as reversible binding between proteins [5–7], between a gene

and a transcription factor [8,9], and between a receptor and a ligand [10,11]. The MM rate law

hence serves as a common mathematical tool in both basic and applied fields, including bio-

chemistry, biophysics, pharmacology, systems biology, and many subfields of chemical engi-

neering [12]. The derivation of the MM rate law from the underlying biochemical mechanism

is based on the steady-state approximation by Briggs and Haldane [3], referred to as the stan-
dard quasi-steady state approximation (sQSSA) [12–17]. The sQSSA, however, is only valid

when the enzyme concentration is low enough and thus the concentration of enzyme–sub-

strate complex is negligible compared to substrate concentration [14]. This condition may be

acceptable for many metabolic reactions with substrate concentrations that are typically far

higher than the enzyme concentrations.

Nevertheless, in the case of protein–protein interactions in various cellular activities, the

interacting proteins as the “enzymes” and “substrates” often show the concentrations compa-

rable with each other [18–20]. Therefore, the use of the MM rate law for describing protein–

protein interactions has been challenged in its rationale, with the modified alternative formula

from the total quasi-steady state approximation (tQSSA) [12,13,17,21–27]. The tQSSA-based

form is generally more accurate than the MM rate law from the sQSSA, for a broad range of

combined molecular concentrations and thus for protein–protein interactions as well

[12,13,21–27]. The superiority of the tQSSA has not only been proven in the quantitative, but

also in the qualitative outcomes of systems, which the sQSSA sometimes fails to predict

[12,21]. Later, we will provide the overview of the tQSSA and its relationship with the conven-

tional MM rate law from the sQSSA.

Despite the correction of the MM rate law by the tQSSA, both the tQSSA and sQSSA still

rely on the assumption that the concentration of the complex of interacting molecules, at each

moment, approaches an equilibrium (quasi-steady state) much faster than the molecular con-

centrations change [12,14,24]. Although this quasi-steady state assumption may work for a

range of biochemical systems, the exact extent of such systems to follow that assumption is not

clear. Numerous cellular processes do exhibit active molecular concentration changes over

time, such as in signal responses, circadian oscillations, and cell cycles [6,7,21,28–31], calling

for a better approach to even cover the time-varying molecular concentrations that may not

strictly adhere to the quasi-steady state assumption.

In this study, we report the generalization of the MM rate law, whereby the interaction of

time-varying molecular components is more properly described than by the tQSSA and

sQSSA. This generalization is the correction of the tQSSA with rigorously estimated, time-

delay effects affected by free molecule availability. Our formulation, termed the effective time-

delay scheme (ETS), well accounts for the transient or oscillatory dynamics and experimental

data patterns of biochemical systems with the relevant analytical insights, which are not cap-

tured by the previous methods. Surprisingly, we reveal that the existing quasi-steady state

assumption can even fail for extremely slow changes in protein concentrations under
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autogenous regulation, whereas the ETS does not. In addition, the ETS allows the natural

explanation of rhythmic degradation of circadian proteins without requiring explicitly-rhyth-

mic post-translational mechanisms; this is not straightforward within the quasi-steady state

assumption. As an added feat, the ETS improves kinetic parameter estimation. As demon-

strated in a number of contexts such as autogenously-regulated cellular adaptation and circa-

dian oscillations, our approach offers a useful theoretical framework to interpret and predict

rich transient or rhythmic dynamics of biochemical systems with a wide range of applicability.

Results

Theory development

First, we present the outline of the tQSSA, sQSSA, and our generalized MM rate law. Consider

two different molecules A and B that bind to each other and form complex AB, as illustrated in

Fig 1(A). For example, A and B may represent two participant proteins in heterodimer forma-

tion, a chemical substrate and an enzyme in a metabolic reaction, and a solute and a trans-

porter in membrane transport. The concentration of the complex AB at time t, denoted by

C(t), changes over time as in the following equation from the mass-action law:

dCðtÞ
dt
¼ ka AðtÞ � CðtÞ½ � BðtÞ � CðtÞ½ � � kdC tð Þ: ð1Þ

Here, A(t) and B(t) denote the total concentrations of A and B, respectively, and hence A(t)
−C(t) and B(t)−C(t) are the concentrations of free A and B. The temporal profiles of A(t) and

B(t) are allowed to be very generic, e.g., even with their own feedback effects as addressed later.

ka denotes the association rate of free A and B. kδ is the effective “decay” rate of AB with

kδ�kd+rc+kloc+kdlt where kd, kloc, and kdlt stand for the dissociation, translocation, and dilu-

tion rates of AB, respectively, and rc for the chemical conversion or translocation rate of A or B

upon the formation of AB. In other words, for the sake of generality, kδ is not limited to a dis-

sociation event but encompasses all rate events to lower the level of AB [Fig 1(A)].

In the tQSSA, the assumption is that C(t) approaches the quasi-steady state fast enough

each time, given the values of A(t) and B(t) [12,24]. This assumption and the notation K�kδ/ka

lead Eq (1) to an estimate C(t)�CtQ(t) with the following form (Text A in S1 Appendix):

CtQ tð Þ �
1

2
K þ AðtÞ þ BðtÞ � KDtQðtÞ
� �

; ð2Þ

DtQ tð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
AðtÞ þ BðtÞ

K

� �2

�
4

K2
AðtÞBðtÞ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
AðtÞ þ BðtÞ

K

� �

þ
AðtÞ � BðtÞ

K

� �2
s

: ð3Þ

Although the tQSSA looks a little complex, it only involves a single parameter K and is easy

to implement in a computer program. As mentioned earlier, the tQSSA is generally more accu-

rate than the conventional MM rate law [12,13,21–27]. To obtain the MM rate law, consider a

rather specific condition,

BðtÞ � K þ AðtÞ or AðtÞ � K þ BðtÞ: ð4Þ
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Fig 1. Generalization of the MM rate law for time-varying molecular concentrations, referred to as the ETS. (a) Two different molecules A and B bind to

each other and form their complex. (b) A TF binds to a DNA molecule to regulate mRNA expression (RNA polymerase and other molecules are omitted here).

In (a) and (b), the graphs show the comparison among the exact time-course profile of the complex concentration, the tQSSA-based (a) or QSSA-based (b)

profile, and the ETS-based profile. The relationship between the tQSSA (or QSSA) and the ETS is illustrated through the effective time delay in the ETS.

Notations ka, kd, kδ, t, ΔtQ(t), K, and ATF(t) are defined in the description of Eqs (1)–(3) and (6)–(8). Simulations in (a) and (b) are based on periodic oscillation

models in Texts G and H in S1 Appendix, respectively, with their parameters in Table G in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011711.g001
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In this condition, the Padé approximant for CtQðtÞ takes the following form:

CtQ tð Þ �
AðtÞBðtÞ

K þ AðtÞ þ BðtÞ
: ð5Þ

Considering Eq (5), Eq (4) is similar to the condition CtQ(t)/A(t)�1 or CtQ(t)/B(t)�1. In

other words, Eq (5) would be valid when the concentration of AB complex is negligible com-

pared to either A or B’s concentration. This condition is essentially identical to the assumption

in the sQSSA resulting in the MM rate law [14]. In the example of a typical metabolic reaction

with B(t)�A(t) for substrate A and enzyme B, Eq (4) is automatically satisfied and Eq (5) fur-

ther reduces to the familiar MM rate law CtQðtÞ � AðtÞBðtÞ=½K þ AðtÞ�, i.e., the outcome of

the sQSSA [1–4,12–14]. To be precise, the sQSSA uses the concentration of free A instead of

A(t), but we refer to this formula with A(t) as the sQSSA because the complex is assumed to be

negligible in that scheme. Clearly, K here is the Michaelis constant, commonly known as KM.

The application of the MM rate law beyond the condition in Eq (4) invites a risk of errone-

ous modeling results, whereas the tQSSA is relatively free of such errors and has wider applica-

bility [12,13,21–27]. Still, both the tQSSA and sQSSA stand on the assumption that C(t)
approaches the quasi-steady state fast enough each time before the marked temporal change of

A(t) or B(t). We now relax this quasi-steady state assumption and generalize the approxima-

tion of C(t) to the case of time-varying A(t) and B(t), as the main objective of this study.

Suppose that C(t) may not necessarily approach the quasi-steady state each time but stays

within some distance from it. As detailed in Text A in S1 Appendix, we linearize the right-

hand side of Eq (1) around C(t)−CtQ(t) and estimate C(t)’s solution as the time integral of

CtQ(t0) (where t0�t) with an exponential kernel-like function. The Taylor expansion of CtQ(t0)
by t−t0 is incorporated into this integral and then its form offers the following approximant for

C(t):

CgðtÞ � minfCtQft � ½kdDtQðtÞ�
� 1
g;AðtÞ;BðtÞg: ð6Þ

Although the above Cγ(t) looks rather complex, this form is essentially a simple conversion

t ! t � ½kdDtQðtÞ�
� 1

in the tQSSA. min{�} is just taken for a minor role to ensure that the com-

plex concentration cannot exceed A(t) or B(t). Hence, the distinct feature of Cγ(t) is the inclu-

sion of an effective time delay ½kdDtQðtÞ�
� 1

in complex formation. This delay is the rigorous

estimate of the molecular relaxation time during which the effect of instantaneous A(t) and

B(t) is notably sustained in the complex formation, as shown in Text A in S1 Appendix. We

will refer to this formulation as the effective time-delay scheme (ETS), and its relationship with

the tQSSA is depicted in Fig 1(A).

We propose the ETS as the generalization of the MM rate law for time-varying molecular

concentrations that may not strictly adhere to the quasi-steady state assumption. If the relaxa-

tion time in complex formation is so short that the effective time delay in Eq (6) can be

ignored, the ETS returns to the tQSSA in its form. Surprisingly, we proved that, unlike the

ETS, any simpler new rate law without a time-delay term would not properly work for active

concentration changes over time (Text C in S1 Appendix). Nevertheless, one may question the

analytical utility of the ETS, regarding the apparent complexity of its time-delay term. In the

examples of autogenously-regulated cellular adaptation and rhythmic protein turnover below,

we will use the ETS to deliver valuable analytical insights into the systems whose dynamics is

otherwise ill-explained by the conventional approaches.

About the physical interpretation of the ETS, we notice that the effective time delay is

inversely linked to free molecule availability, as ½kdDtQðtÞ�
� 1
¼
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k� 1
d
f1þ K � 1½AðtÞ þ BðtÞ � 2CtQðtÞ�g

� 1
from Eq (2). Here,

AðtÞ þ BðtÞ � 2CtQðtÞ ¼ ½AðtÞ � CtQðtÞ� þ ½BðtÞ � CtQðtÞ�, which is the total free molecule

concentration at the quasi-steady state each time. In other words, the less the free molecules,

the more the time delay, which is at most k� 1
d

. One can understand this observation as follows:

−kδC(t) in Eq (1) gives the expectation that the decay time-scale (k� 1
d

) of the complex may

approximate the relaxation time. Yet, the relaxation time is shorter than k� 1
d

, because free A

and B are getting depleted over time as a result of their complex formation and therefore the

complex formation rate ka½AðtÞ � CðtÞ�½BðtÞ � CðtÞ� in Eq (1) continues to decline towards

quicker relaxation of the complex level. This free-molecule depletion effect to shorten the

relaxation time is roughly proportional to the free molecule concentration itself (Text A in

S1 Appendix). Hence, the relaxation time takes a decreasing function of the free molecule con-

centration, consistent with the above observation. Clearly, the free molecule concentration

would be low for relatively few A and B molecules with comparable concentrations—i.e., small

A(t)+B(t) and [A(t)−B(t)]2 in Eq (3). In this case, the relaxation time would be relatively long

and the ETS shall be deployed instead of the tQSSA or sQSSA. We thus expect that protein–

protein interactions would often be the cases in need of the ETS compared to metabolic reac-

tions with much excess substrates not binding to enzymes, as will be shown later.

Thus far, we have implicitly assumed the continuous nature of molecular concentrations as

in Eq (1). However, there exist biomolecular events that fundamentally deviate from this

assumption. For example, a transcription factor (TF) binds to a DNA molecule in the nucleus

to regulate mRNA expression and the number of such a TF–DNA assembly would be either 1

or 0 for a DNA site that can afford at most one copy of the TF [Fig 1(B)]. This inherently dis-

crete and stochastic nature of the TF–DNA assembly is seemingly contrasted with the continu-

ous and deterministic nature of the molecular complex in Eq (1). To rigorously describe this

TF–DNA binding dynamics, we harness the chemical master equation [32] and introduce

quantities ATF(t) and CTF(t), which are the total TF concentration and the TF–DNA assembly

concentration averaged over the cell population, respectively (Text D in S1 Appendix).

According to our calculation, the quasi-steady state assumption leads to the following approxi-

mant for CTF(t):

CTFQ tð Þ �
ATFðtÞ

V½K þ ATFðtÞ�
; ð7Þ

where K�kδ/ka with ka and kδ as the TF–DNA binding and unbinding rates, respectively, and

V is the nuclear volume (Text D in S1 Appendix). In fact, CTFQ(t) in Eq (7) corresponds to a

special case of the previously-studied, stochastic quasi-steady state approximation (stochastic

QSSA) [33,34] for arbitrary molecular copy numbers such as for multiple DNA binding sites.

Of note, the stochastic QSSA becomes close to the tQSSA as its deterministic version, if

VKΔtQ(t)�1 [34].

CTFQ(t) in Eq (7) looks very similar to the MM rate law, considering the “concentration” of

the DNA site (V−1). Nevertheless, CTFQ(t) is not a mere continuum of Eq (5), because the

denominator in CTFQ(t) includes K+ATF(t), but not K+ATF(t)+V−1. In fact, the discrepancy

between CTFQ(t) and Eq (5) comes from the inherent stochasticity in the TF–DNA assembly

(Text D in S1 Appendix). In this regard, directly relevant to CTFQ(t) is the stochastic version of

the MM rate law with denominator K+A(t)+B(t)−V−1 proposed by Levine and Hwa [35],

because the DNA concentration B(t) is V−1 in our case. CTFQ(t) is a fundamentally more cor-

rect approximant for the DNA-binding TF level than both the tQSSA and sQSSA in Eqs (2)

and (5). Therefore, we will just refer to CTFQ(t) as the QSSA for the TF–DNA interactions.
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Still, the use of CTFQ(t) stands on the quasi-steady state assumption. We relax this assump-

tion and generalize the approximation of CTF(t) to the case of time-varying TF concentration.

In a similar way to obtain Cγ(t) in Eq (6), we propose the following approximant for CTF(t)
(Text D in S1 Appendix):

CTFg tð Þ � CTFQ t �
k� 1
d
K

K þ ATFðtÞ

� �

: ð8Þ

This formula represents the TF–DNA version of the ETS, and its relationship with the

QSSA is illustrated in Fig 1(B). The time-delay term in Eq (8) has a similar physical interpreta-

tion to that in Eq (6). Besides, this term is directly proportional to the probability of the DNA

unoccupancy at the quasi-steady state, according to Eq (7).

Through numerical simulations of various systems with empirical data analyses, we found

that the ETS provides the reasonably accurate description of the deviations of time-course

molecular profiles from the quasi-steady states (Texts F–H in S1 Appendix). This result was

particularly evident for the cases of protein–protein and TF–DNA interactions with time-vary-

ing protein concentrations. In these cases, the ETS unveils the importance of the relaxation

time (effective time delay) in complex formation to the shaping of molecular profiles, other-

wise difficult to clarify. Yet, the use of the sQSSA or tQSSA is practically enough for typical

metabolic reaction and transport systems, without the need for the ETS. The strict mathemati-

cal conditions for the validity of the ETS as well as those of the quasi-steady state assumption

are derived in Text E in S1 Appendix.

Autogenous control

Adaptation to changing environments is a process of biological control. The ETS offers an ana-

lytical tool for understanding transient dynamics of such adaptation processes, exemplified by

autogenously regulated systems where TFs regulate their own transcription. This autogenous

control underlies cellular responses to various internal and external stimuli [36,37]. We here

explore the case of positive autoregulation and show that the quasi-steady state assumption

does not even work for extremely-slow protein changes near a tipping point. The case of nega-

tive autoregulation is covered in Text J in S1 Appendix.

In the case of positive autoregulation, consider a scenario in Fig 2(A) that proteins enhance

their own transcription after homodimer formation and this dimer–promoter interaction is

facilitated by inducer molecules. The inherent cooperativity from the dimerization is known to

give a sigmoid TF–DNA binding curve, resulting in abrupt and history-dependent transition

events [36,38]. We here built the full kinetic model of the system without the ETS, tQSSA, or

other approximations of the dimerization and dimer–promoter interaction (Text I in

S1 Appendix). As the simulated inducer level increases, Fig 2(B) demonstrates that an initially

low, steady-state protein level undergoes an abrupt leap at some point ηc, known as a transition

or tipping point. This discontinuous transition with only a slight inducer increase signifies a

qualitative change in the protein expression state. Reducing the inducer level just back to the

transition point ηc does not reverse the protein state, which is sustained until more reduction

in the inducer level [Fig 2(B)]. This history-dependent behavior, hysteresis, indicates the coex-

istence of two different stable states of the protein level (bistability) between the forward and

backward transitions [36,38].

Other than steady states, we examine how fast the system responds to signals. Upon acute

induction from a zero to certain inducer level (>ηc), the protein level grows over time towards

its new steady state and this response becomes rapider at stronger induction away from the

transition point [Fig 2(C)]. Conversely, as the inducer level decreases towards the transition
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point, the response time continues to increase and eventually becomes diverging (in this study,

response time is defined as the time taken for a protein level to reach 90% of its steady state).

This phenomenon has been called “critical slowing down” [39–41]. Regarding this near-transi-

tion much slow protein growth, one may expect that the quasi-steady state assumption would

work properly near that transition point. To test this possibility, we modified the full model by

the tQSSA and QSSA of the dimerization and dimer-promoter interaction, respectively, and

call this modified model the QSSA-based model. For comparison, we created another version

of the model by the ETS of the dimerization and dimer-promoter interaction and call this ver-

sion the ETS-based model (Text I in S1 Appendix). Across physiologically-relevant parameter

conditions, we compared the QSSA- and ETS-based model simulation results to the full mod-

el’s (Text L and Table E in S1 Appendix). Surprisingly, the QSSA-based model often severely

underestimated the response time, particularly near a transition point, while the ETS-based

response time was relatively close to that from the full model [P<10−4 and Text L in

Fig 2. Positive autoregulation and induction kinetics. (a) Protein production mechanism with positive autoregulation in the presence of inducers. (b)

Bifurcation diagram of the simulated protein level as a function of η (proxy for an inducer level). The steady state is plotted as η increases (solid line) or

decreases (dashed line). Acute induction can be simulated by a sudden change of η = 0 to η>ηc in the shaded area. (c) Time-series of protein levels from the

full, ETS, and QSSA models upon acute induction at time 0 h with η = 2.42 (left) or η = 200 (right). (d) The full model-to-QSSA difference in response time as a

function of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ � ZcÞ=Zc

p
. Both the simulated and analytically-estimated differences are presented. The analytical estimation is based on Eq (9). For more

details of (b)–(d), refer to Text I and Tables H and I in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011711.g002
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S1 Appendix; e.g., 8.5-hour shorter and 0.5-hour longer response times in Fig 2(C) (left) in the

QSSA and ETS cases, respectively].

This unexpected mismatch between the QSSA and full model results comes from the fol-

lowing factors: because the QSSA model discards the effective time delay in dimerization and

dimer-promoter interaction, this model accelerates positive feedback, transcription, and pro-

tein production, and thus shortens the response time. Near the transition point, although the

protein level grows very slowly, a little higher transcription activity in the QSSA model sub-

stantially advances the protein growth with near-transition ultrasensitivity that we indicated

above. Therefore, the QSSA model shortens the response time even near the transition point.

Related to this point, the ETS allows the analytical calculation of response time and its

QSSA-based estimate. In this calculation, we considered two different stages of protein growth

—its early and late stages (Text I in S1 Appendix) and found that the QSSA model underesti-

mates response time mainly at the early stage. This calculation suggests that the exact response

time would be longer than the QSSA-based estimate by

2p

r
ffiffiffiffiffiffiffi
Z� Zc
Zc

q
1

D
þ

1

DTF

� �

þ
1

r
ln 1þ

1

D
þ

1

DTF

� �

þ
1

r
1

D
þ

1

DTF

� �

ln 1þ
DDTFð�u � 1Þ½DDTFð�u � 1Þ � 2ðDþ DTFÞ�

ðDþ DTFÞ
2

( )

; ð9Þ

where η and ηc denote an inducer level and its value at the transition point, respectively, r is

the sum of protein degradation and dilution rates, and D and DTF are parameters inversely

proportional to the effective time delays in dimerization and dimer–promoter interaction,

respectively. The additional details and the definition of parameter �u are provided in Text I in

S1 Appendix.

Notably, the above response time difference vanishes as D� 1 þ D� 1
TF ! 0. In other words,

the total effective time delay is responsible for this response time difference. Strikingly, this dif-

ference indefinitely grows as η decreases towards ηc, as a linear function of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ � ZcÞ=Zc

p
.

This prediction can serve as a testbed for our theory and highlights far excessive elongation of

near-transition response time (compared to the QSSA) as an amplified effect of the relaxation

time in complex formation. This amplified effect is the result of the near-transition ultrasensi-

tivity that we indicated above. Consistent with our prediction, the full model simulation always

shows longer response time than the QSSA model simulation and the difference is linearly

scaled to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ � ZcÞ=Zc

p
as exemplified by Fig 2(D) (R2>0.98 in simulated conditions; see

Text L in S1 Appendix). Moreover, its predicted slope against 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ � ZcÞ=Zc

p
[i.e., 2π

(6.28� � �) multiplied by ðD� 1
TF þ D� 1Þr� 1] is comparable with the simulation results [7.3 ± 0.3

(avg. ± s.d. in simulated conditions) multiplied by ðD� 1
TF þ D� 1Þr� 1; see Text L in S1 Appendix].

The agreement of these nontrivial predictions with the numerical simulation results proves the

theoretical value of the ETS. Again, we raise a caution against the quasi-steady state assump-

tion, which unexpectedly fails for very slow dynamics with severe underestimation of response

time, e.g., by a few tens of hours in the case of Fig 2(D).

Rhythmic degradation of circadian proteins

Circadian clocks in various organisms generate endogenous molecular oscillations with ~24 h

periodicity, enabling physiological adaptation to diurnal environmental changes caused by the

Earth’s rotation around its axis. Circadian clocks play a pivotal role in maintaining biological

homeostasis, and the disruption of their function is associated with a wide range of
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pathophysiological conditions [7,9,21,28–30]. According to previous reports, some circadian

clock proteins are not only rhythmically produced but also decompose with rhythmic degrada-

tion rates [Fig 3(A) and 3(B)] [42–46]. Recently, we have suggested that the rhythmic degrada-

tion rates of proteins with circadian production can spontaneously emerge without any

explicitly time-dependent regulatory mechanism of the degradation processes [42,47]. If the

rhythmic degradation rate peaks at the descending phase of the protein profile and stays rela-

tively low elsewhere, it is supposed to save much of the biosynthetic cost in maintaining a cir-

cadian rhythm. A degradation mechanism with multiple post-translational modifications

Fig 3. Rhythmic degradation of circadian proteins. (a) The experimental abundance levels (solid line) and

degradation rates (open circles) of the mouse PERIOD2 (PER2) protein [43]. (b) The experimental abundance levels

(dots, interpolated by a solid line) and degradation rates (open circles) of PSEUDO RESPONSE REGULATOR 7

(PRR7) protein in Arabidopsis thaliana [44,45,48]. Horizontal white and black segments correspond to light and dark

intervals, respectively. (c) A simulated protein degradation rate from the full kinetic model and its ETS- and QSSA-

based estimates, when the degradation depends on a single PTM. In addition, the protein abundance profile is

presented here (gray solid line). A vertical dashed line corresponds to the peak time of −A0(t)/A(t) where A(t) is a

protein abundance. The parameters are provided in Table J in S1 Appendix. (d) The probability distribution of the

peak-time difference between a degradation rate and −A0(t)/A(t) for each number of PTMs (n) required for the

degradation. The probability distribution was obtained with randomly-sampled parameter sets in Table F in S1

Appendix. (e) The probability distribution of the relative amplitude of a simulated degradation rate (top) or its

estimate in Eq (13) (bottom) for each n, when the relative amplitude of a protein abundance is 1. (f) The probability

distribution of the ratio of the simulated to estimated relative amplitude of a degradation rate for each n. For more

details of (a)–(f), refer to Text K in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011711.g003
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(PTMs), such as phospho-dependent ubiquitination, may elevate the rhythmicity of this degra-

dation rate in favor of the biosynthetic cost saving [42,45]. Can the ETS explain this inherent

rhythmicity in the degradation rates of circadian proteins?

First, we constructed the kinetic model of circadian protein production and degradation

without the ETS or other approximations. This model attributes a circadian production rate of

the protein to a circadian mRNA expression or translation rate. Yet, a protein degradation rate

in the model is not based on any explicitly time-dependent regulatory processes, but on con-

stantly-maintained proteolytic mediators such as constant E3 ubiquitin ligases and kinases. In

realistic situations, the protein turnover may require multiple preceding PTMs, like mono- or

multisite phosphorylation and subsequent ubiquitination. Our model covers these cases, as

well. The model comprises the following equations:

dA0ðtÞ
dt

¼ g tð Þ � a0A0 tð Þ; ð10Þ

dAiðtÞ
dt
¼ ai� 1Ai� 1 tð Þ � aiAi tð Þ; ð11Þ

where A0(t) and Ai(t) represent the concentrations of the unmodified and i-th modified pro-

teins, respectively (i = 1,2,� � �,n and n is the total number of the PTMs with n�1), g(t) is the

protein production rate through mRNA expression and translation, ai denotes the protein’s

(i+1)-th modification rate (i = 0, 1,� � �, n−1), and an denotes the turnover rate of the n-th modi-

fied protein.

Next, we apply the ETS to the PTM processes in the model for the analytical estimation of

the protein degradation rate. We observed the mathematical equivalence of the PTM processes

and the above-discussed TF–DNA interactions, despite their different biological contexts

(Text K in S1 Appendix). This observation leads to the estimate rγ(t) of the protein degradation

rate as

rg tð Þ �
av

AðtÞ
min

au

au þ av
A t �

1

au þ av

� �

;A tð Þ
� �

�
auav

au þ av
1 �

1

au þ av

1

AðtÞ
dAðtÞ
dt

� �

þ � � �

� �

; ð12Þ

where A(t) is the total protein concentration, au and av are the rates of the two slowest PTM

and turnover steps in the protein degradation pathway (the step of au precedes that of av; see

Text K in S1 Appendix), and the last formula is to simplify rγ(t) with the Taylor expansion.

The use of rγ(t) may not satisfactorily work for the degradation depending on many preceding

PTMs, but still helps to capture the core feature of the dynamics.

Strikingly, the quasi-steady state assumption does not predict a rhythmic degradation rate,

as the QSSA version of Eq (12) gives rise to a constant degradation rate, auav/(au+av) (Text K

in S1 Appendix). In contrast, the ETS naturally accounts for the degradation rhythmicity

through the effective time delay in the degradation pathway. The last formula in Eq (12) indi-

cates that the degradation rate would be an approximately increasing function of -A0(t)/A(t)
and thus increase as time goes from the ascending to descending phase of the protein profile.

This predicted tendency well matches the experimental data patterns in Fig 3(A) and 3(B).

Fundamentally, this degradation rhythmicity roots in the unsynchronized interplay between

protein translation, modification, and turnover events [42]. For example, in the case of protein

ubiquitination, ubiquitin ligases with a finite binding affinity would not always capture all

newly-translated substrates, and therefore a lower proportion of the substrates can be

PLOS COMPUTATIONAL BIOLOGY Generalized Michaelis–Menten rate law with time-varying molecular concentrations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011711 December 11, 2023 11 / 18

https://doi.org/10.1371/journal.pcbi.1011711


ubiquitinated during the ascending phase of the substrate profile than during the descending

phase. The degradation rate partially follows this ubiquitination pattern. Additional PTMs like

phosphorylation, if required for the ubiquitination, can further retard the full substrate modifi-

cation and thereby increase the degradation rhythmicity for a given substrate profile. One may

expect that these effects would be enhanced with more limited ubiquitin ligases or kinases,

under the condition when the substrate level shows a strong oscillation. This expectation is

supported by the relative amplitude of the degradation rate estimated by Eq (12):

maxt½rgðtÞ� � mint½rgðtÞ�
hrgðtÞi

�
1

au þ av
maxt

1

AðtÞ
dAðtÞ
dt

� �

� mint
1

AðtÞ
dAðtÞ
dt

� �� �

; ð13Þ

where h�i denotes a time average. Here, the relative amplitude of the degradation rate is pro-

portional to 1/(au+av) as well as to the amplitude of A0(t)/A(t). Therefore, limited ubiquitin

ligases or kinases, and strong substrate oscillations increase the rhythmicity of the degradation

rate. Given a substrate profile, multiple PTMs can further enhance this degradation rhythmic-

ity because they invite the possibility of smaller au and av values than expected for the case of

only a single PTM. Moreover, Eq (12) predicts that the degradation rate would peak around

the peak time of −A0(t)/A(t).
In the example of Fig 3(C) for a single PTM case, the simulated degradation rate from the

aforementioned full kinetic model exhibits the rhythmic profile in excellent agreement with

the ETS-predicted profile. Notably, the peak time of the simulated degradation rate is very

close to that of −A0(t)/A(t) as predicted by the ETS. Indeed, the peaks of the degradation rates

show only < 1h time differences from the maximum −A0(t)/A(t) values across most (89–99%)

of the simulated conditions of single to triple PTM cases [Fig 3(D); Text L and Table F in

S1 Appendix]. In addition, for each substrate profile, the simulated degradation rate tends to

become more rhythmic and have a larger relative amplitude as the number of the PTMs

increases [Fig 3(E)], supporting the above argument that multiple PTMs can facilitate degrada-

tion rhythmicity. The estimated relative amplitude in Eq (13) also shows this tendency for sin-

gle to double PTMs, yet not clearly for triple PTMs unlike the simulated relative amplitude

[Fig 3(E)]. This inaccuracy with the triple PTMs comes from the accumulated errors over mul-

tiple PTMs in our estimation, as we indicated early. Still, the estimate in Eq (13) accounts for

at least the order of magnitude of the simulated relative amplitude, as the ratio of the simulated

to estimated relative amplitude almost equals 1 for a single PTM case and remains to be O(1)

for double and triple PTM cases [Fig 3(F)].

Together, the ETS provides a useful theoretical framework of rhythmic degradation of cir-

cadian proteins, which is hardly explained by the quasi-steady state assumption.

Parameter estimation

The use of an accurate function of variables and parameters is important for good parameter

estimation by the fitting of the parameters [13,49,50]. Parameter estimation is a crucial part of

pharmacokinetic–pharmacodynamic (PK–PD) analysis for drug development and clinical

study design [51,52]. Yet, the MM rate law is widely deployed for PK–PD models integrated

into popular simulation and statistical analysis tools. To raise a caution against the uncondi-

tional use of the quasi-steady state assumption in parameter estimation, we here compare the

accuracies of the tQSSA- and ETS-based parameter estimates. Because the sQSSA-based

parameter estimates have already been known as less accurate than the tQSSA-based ones

[12,50] and our own analysis supports this claim (Fig H in S1 Appendix), we will henceforth

skip the use of the sQSSA.
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Specifically, we consider a protein–protein interaction model with time-varying protein

concentrations (Text L in S1 Appendix). To the “true” profile of the protein complex [i.e., C(t)
in Eq (1)], we fit the ETS [Cγ(t) in Eq (6)] or the tQSSA [CtQ(t) in Eq (2)] and estimate the orig-

inal parameters of the model [53]: the ETS-based fitting can estimate both parameters K and

kδ, and the tQSSA-based fitting can estimate only K. Likewise, we consider a TF–DNA interac-

tion model with time-varying TF concentration (Text L in S1 Appendix). The ETS-based fit-

ting can estimate both K and kδ, and the QSSA-based fitting can estimate only K.

In the case of protein–protein interactions, Fig 4(A) reveals that the ETS tends to improve

the parameter estimation over the tQSSA, with more accurately estimated K: most of K values

(89.4%) estimated by the ETS show smaller relative errors than the tQSSA-based estimates and

their 69.3% even show relative errors less than half the tQSSA’s. In the case of TF–DNA inter-

actions, the ETS still offers an improvement in the estimation of K [Fig 4(B)]: most of the ETS-

estimated K values (90.3%) show smaller relative errors than the QSSA-estimated ones and

their 51.8% even show relative errors less than half the QSSA’s.

Fig 4. Parameter estimation for protein–protein and TF–DNA interaction models. (a) The scatter plot of the

relative errors of the tQSSA- and ETS-estimated K values for a protein–protein interaction model. (b) The scatter plot

of the relative errors of the QSSA- and ETS-estimated K values for a TF–DNA interaction model. In (a) and (b), a

diagonal line corresponds to the cases where the two estimates have the same relative errors. (c) The probability

distribution of the relative error of the ETS-estimated kδ for the protein–protein interaction model in (a). (d) The

probability distribution of the relative error of the ETS-estimated kδ for the TF–DNA interaction model in (b).

Regarding (a)–(d), a subset of simulated conditions gave relative errors outside the presented ranges here, but they did

not alter the observed patterns. For more details, refer to Text L in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011711.g004
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Unlike K, kδ can only be estimated through the ETS, and hence the comparison to the

tQSSA- or QSSA-based estimate is not possible. Still, kδ is found to have the relative

error< 0.1 for most of the ETS-based estimates, 81.3% and 81.0% in the cases of protein–pro-

tein and TF–DNA interactions, respectively [Fig 4(C) and 4(D)].

Discussion

The quasi-steady state assumption involves the approximation by time-scale separation where

the “fast” components of a system undergo instantaneous equilibrium and only the “slow”

components govern the relevant dynamics. The time-scale separation has been a long practice

in many different areas, such as the Monod–Wyman–Changeux model of allosteric effects, the

Ackers–Johnson–Shea model of gene regulation by λ phage repressor, and the Born–Oppen-

heimer approximation in quantum chemistry [54–58]. If some prediction from the time-scale

separation deviates from empirical data, our study may provide a useful intuition about this

deviation based on an overlooked time-delay effect in that system.

We here proposed the ETS as a theoretical framework of molecular interaction kinetics

with time-varying molecular concentrations. The utility of the ETS for transient or oscillatory

dynamics originates in the rigorous estimation of the relaxation time in complex formation,

i.e., the effective time delay. In the cases of protein–protein and TF–DNA interactions, the

ETS manifests the importance of the effective time delay for the time-course molecular profiles

distinct from the quasi-steady states. Accordingly, the ETS provides valuable analytical insights

into the signal response time under autogenous regulation and the spontaneous establishment

of the rhythmic degradation rates of circadian proteins. In addition, the ETS improves kinetic

parameter estimation with a caution against the unconditional use of the quasi-steady state

assumption. Our approach enhances the mathematical understanding of the time-varying

behaviors of complex-complete mass-action models [38,42,59] beyond only their steady states.

Further elaboration and physical interpretation of our framework, in concert with extensive

experimental profiling of molecular complexes in regulatory or signaling pathways [18,19], are

warranted for the correct explanation of the interplay of cellular components and its functional

consequences. Although the simulation and empirical data presented here are supportive of

the ETS, direct experimental validation is clearly warranted. This validation could involve the

measurement of the time-series of molecular complex concentrations, such as by mass spec-

trometry-based proteomics with co-immunoprecipitation, densitometry with western blotting,

and enzyme-linked immunosorbent assay in the case of protein complex quantification. High

temporal resolution data are preferred for their comparison with the ETS-based profiles.

Lastly, comprehensive consideration of stochastic fluctuations in molecular binding events

[32,60,61] beyond the TF–DNA interactions in this study would be a fruitful endeavor for

more complete development of our theory, through possible extension of the existing stochas-

tic QSSA [33,34].

Materials and methods

The full details of theory derivation, mathematical modeling, and data sources are available in

S1 Appendix. Numerical simulation and data analysis methods are presented in Text L in

S1 Appendix: briefly, simulations and data analyses were performed by Python 3.7.0 or 3.7.4.

Ordinary differential equations were solved by LSODA (scipy.integrate.solve_ivp) in SciPy

v1.1.0 or v1.3.1 with the maximum time step of 0.05 h. Delay differential equations were solved

by a modified version of the ddeint module with LSODA [62]. Splines of discrete data points

were achieved with scipy.interpolate.splrep in SciPy v1.3.1. Linear regression of data points

was performed with scipy.stats.linregress in SciPy v1.3.1 and then the slope of the fitted line
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and R2 were obtained. For the parameter selection in numerical simulations or for the null

model generation in statistical significance tests, random numbers were sampled by the Mers-

enne Twister in random.py. To test the significance of the average of the relative errors of ana-

lytical estimates against actual simulation data, we randomized the pairing of these estimates

and simulation data (while maintaining their identities as the estimates and simulation data)

and measured the P value (one-tailed) from the 104 null configurations.
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1. Henri V. Lois générales de l’action des diastases. Librairie Scientifique A. Hermann; 1903.

2. Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. Biochem Z. 1913; 49: 333–369.

3. Briggs GE, Haldane JBS. A note on the kinetics of enzyme action. Biochem J. 1925; 19: 338–339.

https://doi.org/10.1042/bj0190338 PMID: 16743508

4. Gunawardena J. Time-scale separation–Michaelis and Menten’s old idea, still bearing fruit. FEBS J.

2014; 281: 473–488. https://doi.org/10.1111/febs.12532 PMID: 24103070

5. Gérard C, Goldbeter A. A skeleton model for the network of cyclin-dependent kinases driving the mam-

malian cell cycle. Interface Focus. 2011; 1: 24–35. https://doi.org/10.1098/rsfs.2010.0008 PMID:

22419972

6. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. Kinetic analysis of a molecular model

of the budding yeast cell cycle. Mol Biol Cell. 2000; 11: 369–391. https://doi.org/10.1091/mbc.11.1.369

PMID: 10637314

7. Leloup JC, Goldbeter A. Toward a detailed computational model for the mammalian circadian clock.

Proc Natl Acad Sci U S A. 2003; 100: 7051–7056. https://doi.org/10.1073/pnas.1132112100 PMID:

12775757

8. Rué P, Garcia-Ojalvo J. Modeling gene expression in time and space. Annu Rev Biophys. 2013; 42:

605–627. https://doi.org/10.1146/annurev-biophys-083012-130335 PMID: 23527779

9. Foo M, Somers DE, Kim P-J. Kernel architecture of the genetic circuitry of the Arabidopsis circadian

system. PLoS Comput Biol. 2016; 12: e1004748. https://doi.org/10.1371/journal.pcbi.1004748 PMID:

26828650

10. Pollard TD. A guide to simple and informative binding assays. Mol Biol Cell. 2010; 21: 4061–4067.

https://doi.org/10.1091/mbc.E10-08-0683 PMID: 21115850

11. Attie AD, Raines RT. Analysis of receptor-ligand interactions. J Chem Educ. 1995; 72: 119–124. https://

doi.org/10.1021/ed072p119 PMID: 28736457

12. Kim JK, Tyson JJ. Misuse of the Michaelis–Menten rate law for protein interaction networks and its rem-

edy. PLoS Comput Biol. 2020; 16: e1008258. https://doi.org/10.1371/journal.pcbi.1008258 PMID:

33090989

13. Schnell S, Maini PK. A century of enzyme kinetics: Reliability of the KM and vmax estimates. Comm

Theor Biol. 2003; 8: 169–187.

14. Segel LA, Slemrod M. The quasi-steady-state assumption: A case study in perturbation. SIAM Rev.

1989; 31: 446–477. https://doi.org/10.1137/1031091

15. Schnell S. Validity of the Michaelis–Menten equation–steady-state or reactant stationary assumption:

That is the question. FEBS J. 2014; 281: 464–472. https://doi.org/10.1111/febs.12564 PMID: 24245583

16. Eilertsen J, Roussel MR, Schnell S, Walcher S. On the quasi-steady-state approximation in an open

Michaelis–Menten reaction mechanism. AIMS Math. 2021; 6: 6781–6814. https://doi.org/10.3934/

math.2021398 PMID: 34142000

17. Eilertsen J, Schnell S, Walcher S. On the anti-quasi-steady-state conditions of enzyme kinetics. Math

Biosci. 2022; 350: 108870. https://doi.org/10.1016/j.mbs.2022.108870 PMID: 35752278

PLOS COMPUTATIONAL BIOLOGY Generalized Michaelis–Menten rate law with time-varying molecular concentrations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011711 December 11, 2023 16 / 18

https://doi.org/10.1042/bj0190338
http://www.ncbi.nlm.nih.gov/pubmed/16743508
https://doi.org/10.1111/febs.12532
http://www.ncbi.nlm.nih.gov/pubmed/24103070
https://doi.org/10.1098/rsfs.2010.0008
http://www.ncbi.nlm.nih.gov/pubmed/22419972
https://doi.org/10.1091/mbc.11.1.369
http://www.ncbi.nlm.nih.gov/pubmed/10637314
https://doi.org/10.1073/pnas.1132112100
http://www.ncbi.nlm.nih.gov/pubmed/12775757
https://doi.org/10.1146/annurev-biophys-083012-130335
http://www.ncbi.nlm.nih.gov/pubmed/23527779
https://doi.org/10.1371/journal.pcbi.1004748
http://www.ncbi.nlm.nih.gov/pubmed/26828650
https://doi.org/10.1091/mbc.E10-08-0683
http://www.ncbi.nlm.nih.gov/pubmed/21115850
https://doi.org/10.1021/ed072p119
https://doi.org/10.1021/ed072p119
http://www.ncbi.nlm.nih.gov/pubmed/28736457
https://doi.org/10.1371/journal.pcbi.1008258
http://www.ncbi.nlm.nih.gov/pubmed/33090989
https://doi.org/10.1137/1031091
https://doi.org/10.1111/febs.12564
http://www.ncbi.nlm.nih.gov/pubmed/24245583
https://doi.org/10.3934/math.2021398
https://doi.org/10.3934/math.2021398
http://www.ncbi.nlm.nih.gov/pubmed/34142000
https://doi.org/10.1016/j.mbs.2022.108870
http://www.ncbi.nlm.nih.gov/pubmed/35752278
https://doi.org/10.1371/journal.pcbi.1011711


18. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, et al. Dynamics of the Ras/ERK MAPK cas-

cade as monitored by fluorescent probes. J Biol Chem. 2006; 281: 8917–8926. https://doi.org/10.1074/

jbc.M509344200 PMID: 16418172
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