
INTRODUCTION

Animals make accurate decisions by effectively gathering and 
processing sensory evidence from their environment. Sensory in-
formation generated from multiple sensory brain regions is trans-
mitted to other brain regions involved in decision-making [1]. For 
example, the anterior lateral motor cortex (ALM) is involved in 
decision-making through the deliberation of appropriate actions 
based on sensory evidence [2-8]. Perturbations of sensory chan-
nels from the sensory cortex or thalamus to the ALM disrupt the 
encoding of sensory information in the ALM, resulting in incor-
rect decisions [9, 10]. Additionally, perturbing the ALM during the 

early phase of decision-making can lead to erroneous decisions [6, 
7]. These findings indicate that multiple stages of decision-making 
must remain intact to make an accurate decision.

In the absence of neural circuit modulation, even skillfully 
trained animals occasionally make erroneous decisions. Such de-
cision errors can occur when the probabilistic coding of sensory 
information in neural populations is disrupted or misinterpreted 
[11]. For example, in the tactile delayed-response task where mice 
licked to the right or left according to a tactile cue, which involved 
the stimulation of the touch location on their whiskers a few sec-
onds before the response, the majority of ALM neurons revealed 
a selective firing activity tuned to touch location or lick direction, 
known as selectivity [6, 9, 12]. The selectivity of ALM neurons is 
systematically altered during error trials [13]. However, it remains 
unclear whether altered selectivity and consequent erroneous 
decisions stem from incorrect sensory information encoding or 
improper use of collected sensory information throughout the 
decision-making process.
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To address this question, the present study aimed to analyze 
ALM activity in perceptual delayed-response tasks. In this task, 
mice received a sensory cue during the sample period, waited for a 
go cue during the delay period, and licked to the left or right dur-
ing the response period. Specifically, we compared two different 
datasets, each involving a different sensory stimulus (tactile vs. 
auditory) during the sample period, to investigate whether neural 
substrates of decision-making errors were consistent across senso-
ry modalities. We divided the ALM population activities into sen-
sory and choice signals to examine the encoding and utilization of 
sensory information separately. Sensory signals, inferred from the 
population activities that differentiated stimuli during the sample 
period, maintained a certain level of distinction between differ-
ent sensory stimuli in the error trials. Yet, the level of distinction 
in the error trials was less pronounced than that in the hit trials. 
In contrast, choice signals derived from population activities that 
discriminated between choices during the delay period increased 
in the direction of the instructed licking movement in the hit tri-
als. However, in the error trials, the choice signals exhibited a pre-
stimulus offset in a direction opposite to the instructed licking 
movement. Furthermore, after the error trial began, the choice sig-
nals showed a gradually increasing tendency in the direction op-
posite to the instructed licking movement, without bias correction. 
In conclusion, our findings suggest that errors in decision-making 
are not attributed to incorrect encoding of sensory information 
but involve the presence of biases in choice before gathering sen-
sory information, which is not corrected by the collected sensory 
information.

MATERIALS AND METHODS

Behavioral task

This study analyzed two separate open datasets obtained from 
the following data-sharing websites: Collaborative Research 
in Computational Neuroscience (CRCNS.org) for the tactile 
delayed-response task [14] and FigShare for the auditory delayed-
response task (https://doi.org/10.25378/janelia.7489253). Detailed 
descriptions of the data collection procedure can be found in the 
studies by Inagaki et al. and Li et al. [4-6]. Briefly, the mice were 
trained to learn the perceptual delayed-response task (Fig. 1A, B). 

In the first dataset, 19 mice were trained to discriminate tactile 
stimuli in a tactile delayed-response task. At the beginning of this 
task, the pole touched an anterior or posterior whisker for 1.3 s 
(sample period, Fig. 1A). Following a temporal delay of 1.3 s (delay 
period, Fig. 1A), a non-selective auditory go cue was given, and the 
mice licked to the right or left based on the given tactile stimulus 
to receive a water reward (response period, Fig. 1A). In the second 

dataset, six mice were trained to discriminate auditory stimuli 
using an auditory delayed-response task. In this task, an auditory 
stimulus was presented at one of the two frequencies, 3 or 12 kHz, 
for 1.15 s. This was followed by a delay period of 2 s. The response 
period was the same as that of the first dataset (Fig. 1B). 

In the first dataset, the mice were trained to discriminate between 
tactile stimuli in a tactile delayed-response task. At the beginning 
of this task, the pole touched an anterior or posterior whisker for 
1.3 s (sample period, Fig. 1A). Following a temporal delay of 1.3 s 
(delay period, Fig. 1A), a non-selective auditory go cue was given, 
and the mice licked right or left based on the given tactile stimulus 
to receive a water reward (response period, Fig. 1A). In the second 
dataset, a different group of mice was trained to discriminate 
between auditory stimuli in an auditory delayed-response task. 
In this task, an auditory stimulus was presented at one of the two 
frequencies: 3 or 12 kHz, for 1.15 s. This was followed by a delay 
period of 2 s. The response period was the same as that of the first 
dataset (Fig. 1B).

Extracellular recording data analysis

Action potentials (spikes) were simultaneously recorded in the 
left ALM by using 32-channel NeuroNexus silicon probes (Part 
No. A4×8-5mm-100-200-177) for the tactile delayed-response 
task and 64-channel Janelia silicon probes for the auditory 
delayed-response task. Spike data were obtained from CRCNS.
org for the tactile delayed-response task and from FigShare for the 
auditory delayed-response task. Extracellular traces were recorded 
from the left ALM and bandpass-filtered (300~6,000 Hz). Spike 
width was calculated as the trough-to-peak interval in the aver-
age spike waveform. Units with spike width narrower than 0.35 
ms were classified as putative fast-spiking neurons, whereas those 
wider than 0.5 ms were defined as putative pyramidal neurons. 
In the tactile delayed-response task, 1,368 units were identified. 
Among them, 112 were putative fast-spiking neurons and 1,137 
were putative pyramidal neurons. The remaining 109 units with 
intermediate spike widths were excluded from analysis. In the au-
ditory delayed-response task, 755 units were identified, of which 
74 were putative fast-spiking neurons and 667 were putative py-
ramidal neurons; the remaining 11 units with intermediate spike 
widths were excluded from the analysis. 

Firing rates were computed with a 50 ms-sized squared bin at ev-
ery 1 ms (98% overlap between successive bins). Baseline subtrac-
tion and magnitude normalization were then applied to the firing 
rates of single trials for each neuron. The baseline duration was 
determined as 0~550 ms before the stimulus was given. For mag-
nitude normalization, we first averaged the firing rates of a neuron 
across every trial. We then calculated a vector length of the aver-
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Classification of selective neurons

ALM neurons exhibit selective activity in response to a specific 
stimulus or licking direction. This selectivity is an essential charac-
teristic of ALM neurons when performing delayed-response task 
[6, 9]. To investigate how selectivity changed between the hit and 
error trials, selective neurons that exhibited significant firing rate 
differences between HR and HL were identified. In addition, to 
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Fig. 1. Task schematic for the delayed-response task and behavioral outcomes (A) Task schematic of the tactile delayed-response task. A pole was 
touched to an anterior or a posterior part of the whisker for 1.3 s (sample period), followed by a delay period of 1.3 s. In the response period, the mice 
licked to the left if the pole touched an anterior part of the whisker. Conversely, if the pole touched a posterior part of the whisker, mice licked to the right. 
(B) In the auditory delayed-response task, instead of tactile stimuli, auditory stimuli were presented. During a 1.15 s sample period, a 12 kHz or 3 kHz 
sound was presented, guiding the mice to lick to the left in case of a high frequency or lick to the right in case of a low frequency. After a delay of 2 s, the 
response period was initiated. (C) Possible behavioral outcomes in the perceptual delayed-response task depending on the match between the sensory 
stimulus (anterior vs. posterior in the tactile delayed-response task; low vs. high frequency in the auditory delayed-response task) and licking direction 
(left vs. right). Hit Right (HR): mice correctly licked to right in response to the posterior cue (or low frequency). Hit Left (HL): mice correctly licked to left 
in response to the anterior cue (or high frequency). Error Right (ER): mice incorrectly licked to left in response to the posterior cue (or low frequency). 
Error Left (EL): mice incorrectly licked to right in response to the anterior cue (or high frequency). (D) Decision accuracy in the tactile and auditory 
delayed-response tasks. Each line indicates the decision accuracy of a session. There was no significant difference in decision accuracy between the pos-
terior and anterior cues (or low vs. high frequency) (two-sided Wilcoxon rank sum test, p>0.1).
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and concatenated over the trials. Next, the average firing rates be-
tween the HR and HL trials were compared. Neurons that showed 
a significant difference in the average firing rate were classified as 
selective neurons (one-sided Wilcoxon rank-sum test, p<0.01). The 
stimulus to which selective neurons elicited higher firing rates was 
referred to as the preferred stimulus, whereas the stimulus associ-
ated with lower firing rates was referred to as the non-preferred 
stimulus. Similarly, an average firing rate was calculated across the 
delay period and selective neurons in the delay period were identi-
fied. The lick direction in which selective neurons showed a higher 
firing rate was referred to as the preferred lick direction, whereas 
the lick direction associated with lower firing rates was considered 
the non-preferred lick direction.

Inferring task-relevant signals from population activities

To investigate how stimulus and choice information are pro-
cessed by ALM neurons during a delayed-response task, it is nec-
essary to extract task-relevant ALM responses representing stimuli 
and choices. Thus, sensory (or choice) signals from the observed 
ALM activity were inferred by projecting population activity onto 
a low-dimensional space that maximally discriminated between 
stimuli (or choices). Specifically, we first averaged the normalized 
firing rate of ALM neurons across trials in each session. Average 
firing rates were then concatenated across sessions for all mice. 
This concatenation of neural data across different mice was sup-
ported by a study by Yang et al., who demonstrated that ALM neu-
rons exhibit consistent neural response profiles across different 
mice [10]. The resulting firing rate matrix was of size N×T, where 
N is the number of neurons aggregated from all sessions and T is 
the number of time points used for the following inference (T=50). 
Using this firing-rate matrix, a sensory mode (SM) was inferred, 
defined as a linear projection vector that linked the N-dimensional 
population firing rates to a one-dimensional (1-D) space. In this 
1-D space, the neural responses to different stimuli were maximal-
ly separated (posterior vs. anterior in the tactile delayed-response 
task and low vs. high frequency in the auditory delayed-response 
task). SM was inferred based on linear discrimination analysis 
(LDA) from the firing rates in each time bin in the sample period. 
However, the neural encoding of the stimulus could be incorrect 
in error trials. For example, in the error trials, the posterior tactile 
stimulus could be encoded incorrectly as if the anterior stimulus 
was given, or the stimulus could be encoded correctly, but with less 
distinctiveness compared to the hit trials. Consequently, to avoid 
such ambiguity in stimulus information encoded in neural activity 
during error trials, the error trials were excluded to infer a more 
reliable SM. After Step 2, the SM vectors were averaged across time 
bins in the sample period. Finally, the average SM was normalized 

to a unit length by dividing it by its norm.
The choice mode (CM) was defined as a linear projection vec-

tor that maximally separated neural responses to lick directions 
in a 1-D space (lick right vs. lick left). Similar to the SM, an N×T 
firing rate matrix was constructed; however, the delay period was 
considered instead of the sample period. Neural responses exhibit 
similar patterns when the same choice is made, irrespective of the 
correctness of the behavioral outcome [6]. Thus, in contrast to 
SM, error trials were used when inferring the CM. It was observed 
that the mice licked to the left even though the stimulus guided 
them to lick the right in the ER trials and licked to the right despite 
the stimulus guiding them to lick the left in the EL trials (Fig. 1C). 
When constructing the data matrix, the neural responses of the 
HR and EL and HL and ER were concatenated. After inferring the 
CM at each time bin in the delay period, the vectors of the CM 
were averaged across time bins in the delay period. Then, the aver-
aged CM was normalized to have a unit length by dividing the CM 
by its norm as equation 1. 
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The SM and CM were kept orthogonal to each other to prevent 
them from capturing overlapping information. This orthogo-
nalization step enhanced the interpretability and specificity of 
the extracted signals. Finally, the sensory and choice signals were 
attained by projecting population activity via the SM and CM, 
respectively. As error trials were required to infer the CM, sessions 
in which both ER and EL trials occurred fewer than six times were 
excluded. 

Decoding analysis 

To evaluate the evolution of neural representations of sensory 
and choice information during the task, a support vector machine 
(SVM) classifier was built to predict a given stimulus or choice at 
each instant over the entire task period. Sessions in which either 
the number of HR or HL trials was less than 50 were excluded to 
ensure a sufficient number of trials for reliable decoding analysis. 
First, sensory signals were used to predict a given stimulus. To this 
end, 50 trials from each HR and HL trial were randomly sampled 
and 75% of them were used to infer SM (total 74 trials). Specifi-
cally, each HR and HL firing rate was averaged across trials and 
used to infer SM, as described above. The inferred SM was used 
to extract sensory signals for prediction. Using the same HR and 
HL trials (74 trials), a training set (x) was constructed to build the 
SVM. Specifically, x consisted of 1-D sensory signals at a given 
time instant averaged over a 30-ms window to reduce noise. Thus, 
the length of x was 37oC where 37 is the number of sampled tri-
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als and C is the number of conditions (e.g., posterior vs. anterior 
or high vs. low frequency). A separate dataset was established to 
test the classifier performance. This test dataset was generated by 
randomly selecting 13 trials that were excluded from the train-
ing dataset. The firing rates were then concatenated from these 
selected trials across sessions. Firing rates were projected using the 
SM inferred from the training dataset. Finally, using the trained 
SVM classifier, the given stimulus was predicted based on the av-
eraged sensory signals over a 30-ms window at every time instant 
during the task. This classification process was repeated 100 times 
from random sampling to the classification test. To determine 
the chance level of the SVM classifier, a permutation test was per-
formed by randomly shuffling the assigned labels (given stimulus) 
for each feature vector. The SVM classifier was then applied to 
predict the labels and compute the average classification accuracy. 
This process was repeated 100 times to obtain an estimation of 
chance.

In addition, 37 of the hit trials were randomly sampled to infer 
CM. However, the number of erroneous trials could be less than 
50. Nevertheless, data sets were augmented by randomly sampling 
the trials and concatenating the firing rate matrices across sessions. 
The CM was then inferred using a firing-rate matrix averaged 
across the sampled hit trials. After inferring CM, another classifier 
was built using a choice signal to predict the resulting lick direc-
tion. A feature vector x was constructed that consisted of choice 
signals averaged over a 30-ms window in the delay period. The 
length of x was 37oC where 37 is the number of sampled trials and 
C is the number of conditions (e.g., right lick vs. left lick). Note that 
we did not include the error trials when training the classifier. This 
is to test if choice signals during the error trials are built in a similar 
way to those in the hit trials. The performance of the classifier was 
tested by randomly sampling 13 test trials that were excluded from 
the training dataset. This classification process was repeated 100 
times from random sampling to the classification test. To evaluate 
the chance level of the SVM classifier, a permutation test was con-
ducted by randomly shuffling the labels (lick direction) associated 
with each feature vector. The SVM classifier was then used to pre-
dict labels based on the shuffled feature vectors, and the average 
classification accuracy was calculated. This process was performed 
100 times to yield an estimation of chance performance.

RESULTS

Neural activities of selective neurons change in the error 

trials

Different groups of mice participated in one of the two percep-
tual delayed-response tasks (Fig. 1A, B). In the tactile delayed-

response task, one group of mice was trained to discriminate the 
pole position. The pole was gently placed on either the anterior or 
the posterior whisker for 1.3 s (sample period, Fig. 1A). The mice 
received a non-selective auditory cue after 1.3 s of a temporal de-
lay (delay period, Fig. 1A). Based on the tactile stimulus, the mice 
responded by licking either the right or left side to earn a water 
reward (response period, Fig. 1A). A separate group of mice was 
trained to perform the auditory delayed-response task. During the 
auditory delayed-response task, mice discriminated between audi-
tory stimuli presented at two frequencies, 12 kHz (high frequency) 
or 3 kHz (low frequency). The auditory stimulus was presented 
for 1.15 s (sample period, Fig. 1B), followed by a 2 s delay (delay 
period, Fig. 1B). After a non-selective auditory cue, the mice licked 
to the left or right to receive a water reward (response period; Fig. 
1B).

There were four possible behavioral outcomes depending on the 
match between the sensory stimulus (anterior vs. posterior in the 
tactile delayed-response task; low vs. high frequency in the audito-
ry delayed-response task) and licking direction (left vs. right) (Fig. 
1C). A trial was categorized as a hit right trial (HR) when the mice 
licked correctly to the right in response to a posterior cue (or low-
frequency sound). Conversely, if the mice licked to the left when a 
posterior cue (or low-frequency sound) was given, it was recorded 
as an error-right trial (ER). When the mice licked correctly to the 
left in response to the anterior cue (or high-frequency sound), 
the trial was labeled a hit left trial (HL). Finally, if the mice incor-
rectly licked to the right in response to the anterior cue (or high-
frequency sound), the trial was referred to as the error left trial (EL). 

On average, in the tactile delayed-response task, each mouse per-
formed 5.00±1.67 sessions over multiple days, where each session 
consisted of 65.37±26.53 HR, 17.29±12.47 ER, 63.60±25.93 HL, 
and 20.74±15.77 EL trials (MEAN±STD). Mice erroneously licked 
the left side in ER trials when a right-directional sensory cue was 
given, and the right side in EL trials when a left-directional sensory 
cue was given. The average ratio of the number of the error tri-
als to the total number of trials was 23.25±9.72% (MEAN±STD). 
In the auditory delayed-response task, each mouse performed 
3.33±1.32 sessions over multiple days, with each session consist-
ing of 125.05±30.10 HR, 16.45±11.16 ER, 117.45±27.21 HL and 
18.05±11.88 EL trials on average. The average ratio of the number 
of the error trials to the total number of trials was 12.89±8.41% 
(MEAN±STD).

We found no difference in decision accuracy between the HR 
and HL groups in both the tactile and auditory delayed-response 
tasks (Fig. 1D, two-sided Wilcoxon rank-sum test, p>0.1; n=95 ses-
sions for the tactile delayed-response task; n=20 sessions for the 
auditory delayed-response task). 
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We observed that ALM neurons selectively increased their activ-
ity in response to specific stimuli or lick directions. For example, 
a neuron exhibited significantly higher activity during the delay 
period of the HR and EL trials when the animal licked to the right 
(Fig. 2A, Session 37, Cell 1). Similarly, another neuron showed 
increased activity in response to high-frequency auditory stimulus 
during the sample period (Fig. 2B, Session 14, Cell 29). We clas-
sified neurons as “selective” if they showed significantly higher 
activity in response to specific stimuli during the sample period 
or choice options during the delay period (p<0.01, one-sided Wil-
coxon test) (Methods). Meanwhile, some neurons did not show 
selective activity during either the sample or delay period. These 
neurons were referred to as non-selective neurons (Fig. 2A, B bot-
toms). We encapsulated the proportions of selective and non-se-

lective neurons across the task periods in Fig. 2C, D. ALM neurons 
showed diverse selective activities. Not all selective neurons during 
the sample period maintained their selectivity throughout the de-
lay period (Fig. 2C, D, an intersecting area between the sample and 
delay). Furthermore, a larger number of neurons displayed selec-
tive activity, starting from the delay period.

We investigated whether the firing activity of selective neurons 
was maintained or changed during error trials. Selective neu-
rons displayed significantly higher firing rates in response to the 
preferred stimulus (or preferred lick direction) than to the non-
preferred stimulus (or non-preferred lick direction) (see every 
black dot below the unity line in Fig. 3A, B). However, in the error 
trials, we noticed that some neurons showed increased firing rates 
in response to the non-preferred stimulus (or non-preferred lick 
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direction) (see pink-colored dots above the unity line in Fig. 3A, B). 
To measure the number of selective neurons that showed shifted 
activity during the error trials, we calculated the proportion of dots 
located above the unity line.

Among all selective neurons in the tactile delayed-response task 
(auditory delayed-response task), we observed that 48.4% (39.0%) 
of them showed lower firing rates for the preferred stimulus 
than for the non-preferred stimulus during the error trials (Fig. 
3A). Similarly, among all selective neurons in the tactile delayed-
response task (auditory delayed-response task), 57.3% (70.4%) 
of them showed lower firing rates for the preferred lick direction 
than for the non-preferred lick direction during the error trials (Fig. 
3B). 

Selective neurons showed significantly higher firing rates in re-
sponse to the preferred stimulus (or lick direction) in hit trials (Fig. 
3C, D). However, in the error trials, the overall firing rates of the 
selective neurons decreased (Fig. 3C, D). Specifically, in the sample 
period of the tactile delayed-response task, the firing rates for the 
preferred stimulus were not significantly different from those for 
the non-preferred stimulus (Bonferroni post hoc test, p>0.05) 
(Fig. 3C, left). During the sample period of the auditory delayed-
response task, the firing rates for the non-preferred stimulus were 
lower than those for the preferred stimulus (Fig. 3C, right). How-
ever, during the delay period in both tasks, the firing rates for the 
non-preferred lick direction were higher than those for the pre-
ferred lick direction (Fig. 3D).

We conducted an additional analysis on non-selective neurons 
to investigate their firing activity in the hit and error trials. To this 
end, we calculated the firing rates of non-selective neurons in the 
HR trials and compared these to the firing rates in the HL trials. 
The same comparison was also made between the ER and EL tri-
als. In the hit trials, non-selective neurons did not display any se-
lective activities (as represented by the black dots centered around 
the unity line in Fig. 3E, F). However, in the error trials, some non-
selective neurons showed selective firing activity (as represented 
by some of the pink dots that were deviated from the unity line in 
Fig. 3E, F). Yet, statistical evaluation of the firing rate differences 
between lick directions for non-selective neurons in the error trials 
revealed that only a minor fraction of non-selective neurons ex-
hibited significant selective activity in the error trials for both tasks 
(ER vs. EL; p<0.01, a one-sided Wilcoxon test). In the tactile task, 
6.15% of non-selective neurons showed selective activity during 
the sample period, and 6.60% during the delay period. Similarly, 
in the auditory task, 6.76% and 8.78% of non-selective neurons 
exhibited selective activity during the sample and delay periods, 
respectively.

In summary, selective neurons exhibited less salient selectiv-

ity and sometimes even increased activity for the non-preferred 
stimulus (or lick direction) during error trials compared with hit 
trials. However, because not all selective neurons showed reversed 
selectivity, it remained ambiguous whether changes in the firing 
activities of a subset of selective neurons caused erroneous deci-
sions or if there were different neural substrates underlying erro-
neous decisions. In addition, a few non-selective neurons showed 
selective activity during error trials. Thus, we conducted further 
analyses to extract task-relevant signals from population activity.

Population activities encode sensory and choice  

information

We extracted task-relevant signals from ALM activity by project-
ing population activity onto a low-dimensional space that maxi-
mally discriminated between stimuli or choices (see Methods). To 
achieve this, we constructed firing rate matrices by averaging the 
normalized firing rates across trials (Fig. 4A, Step 1) and concat-
enating them across sessions, resulting in an N×T matrix (N: total 
neurons from all sessions, T: number of time points) (Fig. 4A, Step 
1). Note that we used both selective and non-selective neurons 
in the following analyses. We used Linear Discriminant Analysis 
(LDA) to define the two key modes. The Sensory Mode (SM) is 
defined as a projection vector that maximizes the separation of 
neural responses to different stimuli during the sample period. In 
contrast, the Choice Mode (CM) is defined as a projection vector 
that differentiates between neural responses corresponding to dif-
ferent lick directions (i.e., lick right vs. lick left) during the delay pe-
riod (Fig. 4A, Step 2). The SM and CM vectors were then averaged 
across the time bins and normalized (Fig. 4A, Step 3). To prevent 
overlapping information, SM and CM were orthogonal to each 
other. This step enhances the interpretability and specificity of 
the extracted signals (Fig. 4A, Step 4). Sensory and choice signals 
were obtained by projecting population activity through the SM 
and CM, respectively. If ALM neurons exhibit similar activity pat-
terns to encode sensory and choice information, the SM and CM 
would be similar. However, we observed a clear discrepancy in the 
similarity values measured by the dot products between the SM 
and CM before orthonormalization (Fig. 4B, C). Because SM and 
CM were projection vectors to a low-dimensional space represent-
ing task-relevant variables (i.e., sensory and choice signals), the 
low similarity between these two vectors indicated that the weight 
of each neuron in the low-dimensional space differed. In other 
words, the engagement of each neuron in a population encoding 
sensory or choice information was different. This result is con-
sistent with that of a previous study demonstrating that distinct 
groups of ALM neurons encode sensory or choice information in 
a perceptual delayed-response task [10]. 
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In both tasks, we observed a transient increase in the absolute 
values of the sensory signals following the onset of the sample 
period. If the erroneous decision was made because sensory infor-
mation was not encoded, then ALM neurons would not exhibit 
sensory signals to differentiate stimulus type. Alternatively, ALM 
neurons might encode stimulus information in a reversed fashion, 
potentially leading to erroneous decision-making. For example, 
when the left-guiding stimulus was given in the error trials, the 
sensory signals might display a similar activity pattern as those 
generated when the right-guiding stimulus was presented in the 
hit trials. However, sensory signals displayed comparable trajec-
tories in both hit and error trials for the right-guiding stimulus 
(HR and ER in Fig. 4D top, Fig. 4E top), and similarly for the left-
guiding stimulus (HL and EL in Fig. 4D top, Fig. 4E top). 

To statistically confirm these observations, we employed statisti-
cal analysis to assess how distinguishable sensory signals were 
between right- and left-guiding stimuli. Using averaged sensory 
signals from multiple iterations, we examined the distinctiveness 
of these signals between stimuli. Specifically, we defined dH to 
represent the difference in sensory signals between HR and HL 
trials, and dE to represent the difference in sensory signals be-
tween ER and EL trials. As a result, both the length of dH and dE 
corresponded to the time points within the sample period. 

Initially, to determine whether sensory signals differed between 
left- and right-guiding stimuli, we conducted a one-tailed paired 
t-test comparing dH (or dE) against 0. If the stimulus informa-
tion was not encoded by ALM neurons, then differences between 
the sensory signals (dH and dE) would be close to 0. Or if ALM 
neurons encoded the stimulus type in a reversed manner in the 
error trials, then dE would be significantly less than 0 while dH is 
significantly greater than 0. We found that both dH and dE were 
significantly greater than 0 (p<0.001 for both tasks). Thus, the 
stimulus type was distinctly encoded in both hit and error trials, 
and the stimulus type (right- vs. left-guiding) was not reversely 
encoded in the error trials.

Next, we tested if the distinction between sensory signals for 
the right- and left-guiding stimuli in the error trials was less pro-
nounced compared to the hit trials (Fig. 4D top, Fig. 4E top). We 
explored whether the sensory signals from the hit trials displayed 
a stronger directional selectivity compared to those from the error 
trials. For this purpose, we performed a one-tailed paired t-test 
between dH and dE. Our analysis confirmed that dH was signifi-
cantly larger than dE (p<0.001). Together, the sensory signals ef-
fectively discriminated between the right- and left-guiding stimuli 
in both hit and error trials, although there was comparatively less 
distinctiveness in the error trials. 

In the tactile delayed-response task, there was a time lag between 

the onset of the sample period and the increase in sensory signals 
(Fig. 4D, top), presumably due to the temporal delay required for 
the pole to fully touch the whisker. No such delay was observed in 
the auditory delayed-response task (Fig. 4E, top). The distinction 
in sensory signals between stimuli was most pronounced in the 
sample period and gradually diminished during the delay period 
in both tasks (Fig. 4D, E, top).

The choice signals gradually increased over time in both tasks. In 
the error trials, the choice signals tended to increase in the direc-
tion opposite to the guided licking direction (Fig. 4D, E, bottom). 
For example, in ER trials, where mice were guided to lick right but 
licked left instead, choice signals increased in alignment with the 
direction of the increase in choice signals observed in HL trials. 
To statistically validate this observation, we defined dH as the dif-
ference in choice signals between HR and HL during the sample 
period. Similarly, dE represented the difference in choice signals 
between ER and EL during the sample period. If the choice signals 
in the error trials followed similar trajectories as those in the hit 
trials, then dE would be also significantly greater than 0. How-
ever, we found that dE was significantly less than 0 while dH was 
significantly greater than 0 (one-tailed paired t-test, p<0.001 for 
both tasks). We conducted the same analysis on the choice signals 
during the delay period. We found the same results – while dH was 
significantly greater than 0, dE was significantly less than 0 (one-
tailed paired t-test, p<0.001 for both tasks). These results support 
that even if the sensory signals encapsulated the given stimulus 
information, the choice signals diverged to the opposite direction 
of the guided lick direction (Fig. 4D bottom, Fig. 4E bottom). 

Interestingly, in the error trials, we observed an offset in the CM 
even before the trial started (Fig. 4D, E, bottom). Specifically, dur-
ing the pre-stimulus period, the choice signal shifted toward the 
HR trajectory in the EL trials and the HL trajectory in the ER tri-
als. However, we could not observe this offset in the pre-stimulus 
period in the hit trials. 

Choice bias exists during the pre-sample period in the error 

trials

We further investigated whether the offset of choice signals dur-
ing the pre-stimulus period was biased toward the resulting lick 
direction. If the choice signals encoded a lick direction opposite 
to the guided lick direction, then the prediction of the resultant 
lick direction would surpass the chance level (approximately 50%). 
Consequently, the resultant lick direction contradicts the stimulus 
information encapsulated in sensory signals, which suggests that 
the formation of choice signals occurred independently of the 
provided stimulus information in the error trials.

To test this, we employed an SVM classifier trained with sensory 
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or choice signals to predict the given stimulus or resultant lick di-
rection (see the Methods section). For succinctness, we refer to the 
decoding accuracy when predicting a given stimulus using senso-
ry signals as AccuracySM and predicting the resulting lick direction 
using choice signals as AccuracyCM.

During the pre-stimulus period of the hit trials, AccuracySM and 
AccuracyCM for both tasks were close to chance (Fig. 5A~D). How-
ever, during the prestimulus period of the error trials, AccuracyCM 
was significantly higher than chance (p<0.001, Bonferroni post 
hoc test), whereas AccuracySM was not higher than chance (Fig. 
5A~D). In the auditory delayed-response task, AccuracySM differed 

between the hit and error trials across the prestimulus and sample 
periods (p<0.001, Bonferroni post hoc test; Fig. 5C). In addition, 
AccuracyCM was significantly higher in the error trials than in the 
hit trials and chance level in both tasks (p<0.001, Bonferroni post 
hoc test; Figs. 5B, D). 

Throughout the sample period, AccuracySM during the error 
trials exceeded chance levels. This trend is similarly observed in 
Fig. 4D, E, where sensory signals encoded the given stimulus, not 
the alternative stimulus during the error trials. These findings 
further strengthen the hypothesis that ALM neurons are capable 
of encoding the given stimulus information during the error trials. 
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However, AccuracySM during the sample period in the error trials 
was lower than that during the hit trial, suggesting a weakened per-
ception of the stimulus in the error trials (Fig. 5C). This reduced 
AccuracySM was not observed in the tactile delayed-response task 
(Fig. 5A).

Nevertheless, AccuracyCM in the error trials was higher through-
out the entire periods, including the presample, sample, and delay 
periods when predicting the resultant lick direction rather than 
the guided lick direction (Fig. 5B, D). This inference can be drawn 
from Fig. 4D, E, where the choice signals were biased towards the 
lick direction opposite the guided lick direction before the stimu-
lus presentation.

In summary, these results tentatively suggest that sensory signals 
may still convey sensory information regarding a given stimulus, 
even in the error trials. However, choice signals became distinct 
between lick directions during the sample period.

DISCUSSION

In this study, we investigated why skillfully trained animals occa-
sionally make erroneous decisions based on sensory information 
during choice tasks. We explored two potential factors of ALM 
activity that may contribute to erroneous decisions. First, we tested 
whether sensory information was abnormally encoded in the 
ALM. Second, we tested whether the alternations in neural activity 
were associated with the decision-making process. To this end, we 
analyzed two separate datasets of ALM recordings during which 
the mice performed the tactile or auditory delayed-response tasks. 
We observed alternations in the selective activities of individual 
neurons during both the sample and delay periods (Fig. 2A~D). 
Additionally, we examined how the representation of task-relevant 
variables, such as stimulus or choice, would be altered between hit 
and error trials. In both tasks, our observations tentatively sug-
gested that while sensory information may become less distinctive, 
ALM neurons potentially retains some degree of information dur-
ing the error trials (Fig. 4D, E, 5A, C). In contrast, the choice signals 
evolved toward incorrect directions in the error trials. Notably, 
despite bias not being advantageous in either task, we observed a 
bias towards a specific choice in the prestimulus period only in er-
ror trials. Additionally, we found that this bias in choice was mostly 
caused by selective rather than non-selective neurons (not shown 
in the present study). Therefore, we concluded that the presence 
of a bias in ALM activity towards a specific choice may hinder the 
utilization of correct sensory information and contribute to erro-
neous decision-making.

A previous study has indicated that ongoing neural activity can 
influence stimulus detection [15] and behavioral performance. 

For example, perceptual expectations can introduce biases at the 
beginning of the decision-making process [16]. Neural oscillation 
studies have found that behavioral performance depends on the 
amplitude of oscillations during the prestimulus period [17-19]. 
In addition, sensory information presented in the late phase does 
not influence the decisions [2]. These findings suggest that if the 
ongoing neural activity preceding the stimulus presentation oc-
casionally reaches a certain state, it may become difficult to reverse 
its dynamics using external information. In our study, once the 
decision-making process progressed to a certain stage before the 
trial began, it became less susceptible to the influence of sensory 
information in the opposite direction.

We analyzed two separate datasets involving different sensory 
modalities and observed common substrates underlying errone-
ous decisions. We observed an offset in the choice signals during 
the pre-sample period in the error trials, regardless of sensory 
modality. Simultaneously, we noticed minor differences between 
the tasks. In the tactile delayed-response task, there was no offset 
in the sensory signals during the pre-stimulus period (Fig. 5A). In 
addition, there was no significant difference in the decoding ac-
curacy during the sample period between the hit and error trials. 
However, in the auditory delayed-response task, we observed an 
offset in the sensory signals in the direction opposite to that of the 
given stimulus (Fig. 5C). This discrepancy in accuracy persisted 
throughout the sample period (Fig. 5C). These differences may 
originate from the differences in sensory modalities (tactile vs. au-
ditory). For instance, the suppression of the auditory cortex during 
the early phase of the delay period impairs working memory, sug-
gesting its involvement in the maintenance of working memory 
[20]. However, a similar suppression of the vS1 in the delay period 
does not affect working memory [6, 21], suggesting that working 
memory may be differently influenced by sensory information 
processing in the two modalities. Hence, the differences in the sen-
sory modalities observed in this study may reflect the utilization of 
sensory information in working memory tasks.

If an increment in choice signals over time is indicative of con-
fidence, choice signals would decrease when conflicting evidence 
is presented (i.e., presentation of a stimulus opposite to biased 
choice signals in error trials). However, the choice signals gradually 
moved in the opposite direction, with no decreasing tendency in 
the error trials during the sample period (Fig. 5C, D). An alterna-
tive explanation for this increase in choice signals could be the ef-
fect of urgency signals on the decision-making process [2, 3]. This 
urgency signal originates from brain regions external to the ALM 
and drives timely decision-making while maintaining robustness 
against distracting sensory signals [2]. In this scenario, the urgency 
signal acts as a stabilizing force that reinforces the initial bias and 
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reduces the likelihood of changing decisions. 
Multiple brain regions are reportedly involved with the ALM in 

the perceptual delayed-response task, including the sensory cortex, 
medial motor cortex, thalamus, and cerebellum [9, 21-24]. Future 
studies need to test whether the bias observed in this study is only 
present in the ALM or is shaped through computations across 
multiple regions. Also, further research is required to investigate 
how biases are shaped and how they affect the decision-making 
process over trials. They can also be related to memory consolida-
tion during learning the task. Investigating changes in the sensory 
and control signals of ALM populations during learning will par-
ticularly be intriguing to understand the sources of biases. Biases 
can arise from various sources, including the outcomes of preced-
ing trials or preferences for a specific click direction. Further, it is 
important to address whether there is indeed no bias in the hit 
trials or whether there exists a weak bias that may have been can-
celed out after the averaging processes. Large-scale neural record-
ings are effective for capturing heterogeneous neural dynamics 
and identifying sources of bias within individual subjects [25]. By 
examining neural activity patterns and their relationship with bias, 
we may gain deeper insight into the mechanisms underlying bias 
formation and its influence on sensorimotor transformation.
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