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Benchmarking integration of single-cell
differential expression

Hai C. T. Nguyen 1,6, Bukyung Baik1,6, Sora Yoon1,5, Taesung Park2,3 &
Dougu Nam 1,4

Integration of single-cell RNA sequencing data between different samples has
been a major challenge for analyzing cell populations. However, strategies to
integrate differential expression analysis of single-cell data remain under-
investigated. Here, we benchmark 46 workflows for differential expression
analysis of single-cell data with multiple batches. We show that batch effects,
sequencing depth and data sparsity substantially impact their performances.
Notably, we find that the use of batch-corrected data rarely improves the
analysis for sparse data, whereas batch covariate modeling improves the
analysis for substantial batch effects. We show that for low depth data, single-
cell techniques based on zero-inflation model deteriorate the performance,
whereas the analysis of uncorrected data using limmatrend,Wilcoxon test and
fixed effects model performs well. We suggest several high-performance
methods under different conditions based on various simulation and real data
analyses. Additionally, we demonstrate that differential expression analysis for
a specific cell type outperforms that of large-scale bulk sample data in prior-
itizing disease-related genes.

Recent advances in single-cell RNA sequencing (scRNA-seq) techni-
ques have tremendously increased our understanding of cell types and
progresses in disease1,2. While thousands of cells have been sequenced
in individual studies (or samples), integration of scRNA-seq data has
been confounded by technical variations between studies, called batch
effects. In particular, the lack of starting materials in scRNA-seq resul-
ted in highly sparse and noisy data, posing a great challenge to batch-
effect correction (BEC) of scRNA-seq data3,4. Various BEC algorithms
have been developed to accurately discriminate cell types from mul-
tiple scRNA-seq datasets3. However, the impact of batch effects on
gene-based analysis such as differential expression (DE) analysis and
the strategies to integrate DE analysis for scRNA-seq data remained
underinvestigated. Accurate DE analysis in each cell type across sam-
ples (or patients) is instrumental in finding dysregulated genes and
functions in disease.

Tran and colleagues3 recently benchmarked 14 BEC methods for
scRNA-seqdata, and recommended several highperformancemethods.
Most of the BECmethods exploited the low dimensionality of data and
removed the technical differences between matched cells using deep
learning or statistical models. Some methods then returned batch-
effect-corrected data in the original high dimension (dubbed BEC data)
for downstream analysis, whereas others provided only the low
dimensional embeddings for efficient annotation of cells. In particular,
they tested theuse of BECdata forDE analysis (bimodmethod5) under a
simple batch condition, where the analysis of BEC data showed a
superior performance compared to that of uncorrected data. In con-
trast, it was suggested that batch alignment could severely distort the
high-dimensional observation of genes, making gene-based analysis
problematic6, and DE testing for measured data with technical covari-
ates included in the model was recommended over using BEC data7.
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While the BEC methods have been used to reduce or eliminate
the technical differences between matched cells, they also intro-
duced artifacts derived from data transformation and estimation
of batch differences. Therefore, the possible improvements in DE
analysis by using BEC data should be investigated extensively
using various DE methods and experimental conditions. In con-
trast, a statistical model with a batch covariate, denoted as a cov-
ariate model, used the uncorrected data in each batch when
estimating the model parameters with which DE was tested (see
Methods)8–10. Another possible approach for integrating DE ana-
lysis of scRNA-seq data was the meta-analysis, where DE analysis
was performed for each batch and the resulting statistics or p-
values were combined for each gene11,12.

In this study, we compared various workflows for DE analysis of
scRNA-seqdatawithmultiple batches in three different approaches: (1)
DE analysis of BEC data, (2) covariate modeling, and (3) meta-analysis.
These approaches were referred to integrative strategies as opposed to
the DE analysis of pooled uncorrected data, denoted as naïve DE
analysis. We considered “balanced” study design where each batch
contained both the sample conditions to be compared, which enabled
to accommodate batch effects into DE analysis (Fig. 1). This experi-
mental design has been commonly observed in large-scale single-cell
studies where each batch included multiple individuals with various
group factors, such as severity of disease, sex, age, ethnic group and
clinical status13,14, or in cancer studieswhereboth tumor andnontumor
samples were used from the same patients2,15. For unbalanced design,
the batch effects were just ignored in DE analysis. See Supplementary
Notes for additional explanation on our study design. We used both
model-based and model-free simulations of scRNA-seq data, and ana-
lyzed the impacts ofbatch-effects, sequencingdepth anddata sparsity.
Furthermore, we compared the signs and fold changes (FCs) of DE
genes before and after BEC to analyze the extent of data distortion.

We analyzed real scRNA-seq data for seven patients with lung
adenocarcinoma (LUAD)15. Notably, the analysis of LUAD epithelial
cells prioritized both known disease genes and prognostic genes sig-
nificantly better than that of large-scale bulk sample data, demon-
strating the high resolution and efficacy of DE analysis of scRNA-seq
data (denoted as scRNA-seq DE analysis). Finally, we benchmarked DE
analysis of large-scale scRNA-seq data for COVID-19 patients14.

Results
In total, we benchmarked 46 combinations between ten BEC methods
(ZINB-WaVE16, MNN17, scMerge18, Seurat v319, limma_BEC10, scVI20,
scGen21, Scanorama22, RISC23 and ComBat24), covariate models, three
meta-analysis methods (weighted Fisher (wFisher)12, fixed effects

model (FEM)11 and randomeffectsmodel (REM)11), observationweights
of ZINB-WaVE25, pseudobulk data26 and seven DE methods (DESeq29,
edgeR27, edgeR_DetRate28, limmavoom10, limmatrend29, MAST30 and
Wilcoxon test). These combinations are denoted as DE workflows in
this article. We note that all the ten BEC methods tested here yielded
BEC data to be used for DE analysis. See Supplementary Notes on how
each DE workflow was implemented. We focused on the comparison
between two cell groups (case vs. control groups) and tested two and
seven batches. For each DE workflow, a threshold of q-value <0.05
(Benjamini-Hochberg correction31) was used to select differentially
expressed genes (DE genes). For simulated data, F-score and area
under precision-recall curve (AUPR) were compared between DE
workflows. In particular, we used F0.5-scores and partial AUPR (deno-
ted as pAUPR) for recall rates <0.5, both of which weighed precision
higher than recall; precisionhas beenof particular importancebecause
we often needed to identify a small number of marker genes from
sparse and noisy scRNA-seq data. Further justification of using these
measures is shown in Supplementary Fig. 1. For real scRNA-seq data,
the ranks of known disease genes and prognostic genes, false-positive
rates (p-value <0.05) and false discoveries (q-value <0.05) were com-
pared. Throughout this study, we filtered sparsely expressed genes
(zero rate > 0.95), considering that genes rarely expressed in a cell type
were less likely to have a substantial role in disease.

Model-based simulation tests
ScRNA-seq count data were simulated on the basis of negative bino-
mial (NB) model using splatter R package32. Sparse data with a high
overall zero rate (> 80%) after the gene filtering were simulated for
each batch. The batch and group factors were estimated using the
principal variance component analysis (PVCA)33. We first used a mod-
erate level depth (default; average nonzero count of 77 after gene
filtering, denoted as depth-77) and simulated 20% DE genes (10% up
and 10% down). The F0.5-scores and precision-recall results for two
batches were shown in Fig. 2. The experiment was performed for six
combinations of “dropout” parameter values and case-control ratios
(see Methods), and the resulting F0.5-scores and pAUPRs were repre-
sented as boxplots and averaged curves, respectively. We tested for
both small and large batch effects. In both cases, parametric methods
based on MAST, DESeq2, edgeR and limmatrend showed good F0.5-
scores and pAUPRs. Wilcoxon test applied to log-normalized uncor-
rected data (denoted as Raw_Wilcox) has been the most widely used
for scRNA-seq DE analysis26; however, its performance was relatively
low for moderate depths. ZINB-WaVE (in short, ZW) provided the
observation weights (i.e., dropout probability) that were used to
unlock bulk RNA-seq tools to analyze single-cell data25. These weights

Fig. 1 | An overview of our benchmark study for differential expression (DE) analysis of scRNA-seq data with multiple batches. In total, 46 workflows from three
integrative strategies and the naïve approach were tested.
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Fig. 2 | Model-based simulation results formoderate depths (two batches; zero
rate >80%). Scatter plots (tSNE) of twobatches fora small andb large batcheffects.
Principal variance component analysis results representing c small and d large
batch effects. F0.5-scores for 46 differential expression (DE) workflows for e small
and f large batch effects. Results for six cell proportion scenarios (12 instances in
total: six for upregulated genes and six for downregulated genes) are represented
as boxplots; the lower, center and upper bars represent the 25th, 50th and 75th

percentiles, respectively, and thewhiskers represent ± 1.5 × interquartile range. The
vertical dotted lines (black) indicate the median F0.5-score of Wilcoxon test
(Raw_Wilcox). Precision-recall curves for g small and h large batch effects. The
partial areas under the curve for recall rate <0.5 (pAUPRs) are computed and sorted
in descending order in the legends. The vertical dotted lines (black) indicate the
recall rate of 0.5. The precision-recall pairs that correspond to q-value = 0.05 in
each DE workflow are circled. n = 1050 cells were used for each test case.

Article https://doi.org/10.1038/s41467-023-37126-3

Nature Communications |         (2023) 14:1570 3



were applied to edgeR and DESeq2 (denoted as ZW_edgeR and
ZW_DESeq2, respectively), and specifically improved edgeR.

Next, we checked whether the integrative strategies truly
improved the analysis of uncorrected data. First, the use of BEC data
rarely improved DE analysis; one exception was scVI that considerably
improved limmatrend. Second, covariate modeling (workflow names
tagged with _Cov) overall improved the corresponding DE methods
such as MAST, ZW_edgeR, DESeq2 and limmatrend for large batch
effects. In particular, the performances of two single-cell-dedicated
methods, MAST_Cov and ZW_edgeR_Cov were among the highest.
However, covariatemodeling tended to slightly deteriorateDE analysis
for small batch effects. Third, meta-analysis methods did not improve
on the naïve DE methods. Interestingly, DE analyses of pseudobulk

data, denoted as pseudobulk methods, showed good pAUPRs for small
batch effects; however, they performed the worst for large batch
effects. We also tested seven batches which yielded similar relative
performances betweenDEworkflows (Supplementary Fig. 2).With this
increased number of batches, pseudobulk methods were rather
improved, but their F0.5-scores remained the lowest for large batch
effects.

In recent years, shallowbut high-throughput sequencing using for
example 10x Genomics’ technique has been widely used34. Therefore,
we further performed simulation tests for low depths (average non-
zero count of 10 and 4 after gene filtering, denoted as depth-10 and
depth-4, respectively) (Fig. 3). As the depth was lowered, the use of
observation weights of ZINB-WaVE deteriorated both edgeR and

a b

c d

Combat_Wilcox
limma_BEC_Wilcox

MNN_Wilcox
scMerge_Wilcox

Seurat_Wilcox
ZW_BEC_Wilcox

scVI_Wilcox
scGen_Wilcox

Scanorama_Wilcox
Raw_Wilcox

RISC_Wilcox
RISC_QP

Pseudobulk_DESeq2
Pseudobulk_edgeR
Pseudobulk_limma

Pseudobulk_limmatrend
MAST

MAST_Cov
DESeq2

DESeq2_Cov
ZW_DESeq2

ZW_DESeq2_Cov
edgeR_DetRate

edgeR_DetRate_Cov
edgeR

edgeR_Cov
ZW_edgeR

ZW_edgeR_Cov
limmavoom

limmavoom_Cov
limmatrend

limmatrend_Cov
Combat_limmatrend

MNN_limmatrend
scMerge_limmatrend

scVI_limmatrend
scGen_limmatrend

Scanorama_limmatrend
RISC_limmatrend

DESeq2_FEM
LogN_FEM

DESeq2_REM
LogN_REM

DESeq2_wFisher
edgeR_wFisher

LogN+limmatrend_wFisher
0.0 0.2 0.4 0.6

F−score (beta=0.5)

Combat_Wilcox
limma_BEC_Wilcox

MNN_Wilcox
scMerge_Wilcox

Seurat_Wilcox
ZW_BEC_Wilcox

scVI_Wilcox
scGen_Wilcox

Scanorama_Wilcox
Raw_Wilcox

RISC_Wilcox
RISC_QP

Pseudobulk_DESeq2
Pseudobulk_edgeR
Pseudobulk_limma

Pseudobulk_limmatrend
MAST

MAST_Cov
DESeq2

DESeq2_Cov
ZW_DESeq2

ZW_DESeq2_Cov
edgeR_DetRate

edgeR_DetRate_Cov
edgeR

edgeR_Cov
ZW_edgeR

ZW_edgeR_Cov
limmavoom

limmavoom_Cov
limmatrend

limmatrend_Cov
Combat_limmatrend

MNN_limmatrend
scMerge_limmatrend

scVI_limmatrend
scGen_limmatrend

Scanorama_limmatrend
RISC_limmatrend

DESeq2_FEM
LogN_FEM

DESeq2_REM
LogN_REM

DESeq2_wFisher
edgeR_wFisher

LogN+limmatrend_wFisher
0.0 0.2 0.4 0.6

F−score (beta=0.5)



 LogN+limmatrend_wFisher ... ... 0.798

 edgeR_wFisher ........ 0.686

 DESeq2_wFisher − − − − 0.822

 LogN_REM −.−.−.− 0.749

 DESeq2_REM − ... − 0.808
 LogN_FEM  ...... 0.805

 DESeq2_FEM ... ... 0.811

 RISC_limmatrend ........ 0.735

 Scanorama_limmatrend − − − − 0.805

 scGen_limmatrend −.−.−.− 0.362

 scVI_limmatrend − ... − 0.579

 scMerge_limmatrend  ...... 0.803

 MNN_limmatrend ... ... 0.792

 Combat_limmatrend ........ 0.809

 limmatrend_Cov − − − − 0.827

 limmatrend −.−.−.− 0.804

 limmavoom_Cov − ... − 0.780

 limmavoom  ...... 0.754

 ZW_edgeR_Cov ... ... 0.661
 ZW_edgeR ........ 0.625

 edgeR_Cov − − − − 0.726

 edgeR −.−.−.− 0.700

 edgeR_DetRate_Cov − ... − 0.729

 edgeR_DetRate  ...... 0.702

 ZW_DESeq2_Cov ... ... 0.655
 ZW_DESeq2 ........ 0.614

 DESeq2_Cov − − − − 0.834

 DESeq2 −.−.−.− 0.796
 MAST_Cov − ... − 0.802

 MAST  ...... 0.775

 Pseudobulk_limmatrend ... ... 0.441
 Pseudobulk_limma ........ 0.446

 Pseudobulk_edgeR − − − − 0.421

 Pseudobulk_DESeq2 −.−.−.− 0.469

 RISC_QP − ... − 0.736

 RISC_Wilcox  ...... 0.786
 Raw_Wilcox ... ... 0.790

 Scanorama_Wilcox ........ 0.715

 scGen_Wilcox − − − − 0.412

 scVI_Wilcox −.−.−.− 0.536

 ZW_BEC_Wilcox − ... − 0.711

 Seurat_Wilcox  ...... 0.788

 scMerge_Wilcox ... ... 0.758

 MNN_Wilcox ........ 0.672

 limma_BEC_Wilcox − − − − 0.759
 Combat_Wilcox −.−.−.− 0.758

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n



 LogN+limmatrend_wFisher ... ... 0.845

 edgeR_wFisher ........ 0.784
 DESeq2_wFisher − − − − 0.777

 LogN_REM −.−.−.− 0.823

 DESeq2_REM − ... − 0.751

 LogN_FEM  ...... 0.857

 DESeq2_FEM ... ... 0.756

 RISC_limmatrend ........ 0.849
 Scanorama_limmatrend − − − − 0.850

 scGen_limmatrend −.−.−.− 0.368

 scVI_limmatrend − ... − 0.687

 scMerge_limmatrend  ...... 0.833
 MNN_limmatrend ... ... 0.835

 Combat_limmatrend ........ 0.849

 limmatrend_Cov − − − − 0.853
 limmatrend −.−.−.− 0.854

 limmavoom_Cov − ... − 0.831
 limmavoom  ...... 0.826

 ZW_edgeR_Cov ... ... 0.713
 ZW_edgeR ........ 0.714

 edgeR_Cov − − − − 0.806

 edgeR −.−.−.− 0.804
 edgeR_DetRate_Cov − ... − 0.805

 edgeR_DetRate  ...... 0.806

 ZW_DESeq2_Cov ... ... 0.689
 ZW_DESeq2 ........ 0.692

 DESeq2_Cov − − − − 0.805
 DESeq2 −.−.−.− 0.801

 MAST_Cov − ... − 0.833
 MAST  ...... 0.832

 Pseudobulk_limmatrend ... ... 0.657
 Pseudobulk_limma ........ 0.655

 Pseudobulk_edgeR − − − − 0.642

 Pseudobulk_DESeq2 −.−.−.− 0.702

 RISC_QP − ... − 0.850

 RISC_Wilcox  ...... 0.862
 Raw_Wilcox ... ... 0.861

 Scanorama_Wilcox ........ 0.758

 scGen_Wilcox − − − − 0.350

 scVI_Wilcox −.−.−.− 0.626

 ZW_BEC_Wilcox − ... − 0.780

 Seurat_Wilcox  ...... 0.853

 scMerge_Wilcox ... ... 0.744

 MNN_Wilcox ........ 0.607

 limma_BEC_Wilcox − − − − 0.789
 Combat_Wilcox −.−.−.− 0.785

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

Fig. 3 | Model-based simulation results for low depths (depth-10 and depth-4;
zero rate >80%). F0.5-scores for 46 differential expression (DE) workflows for (a)
depth-10 and (b) depth-4. Results for six cell proportion scenarios (12 instances in
total: six for upregulated genes and six for downregulated genes) are represented
as boxplots; the lower, center and upper bars represent the 25th, 50th and 75th
percentiles, respectively, and thewhiskers represent ± 1.5 × interquartile range. The

vertical dotted lines (black) indicate the median F0.5-score of Wilcoxon test
(Raw_Wilcox). Precision-recall curves for c depth-10 and d depth-4. The partial
areas under the curve for recall rate <0.5 (pAUPRs) are computed and sorted in
descending order in the legends. The vertical dotted lines (black) indicate the recall
rate of 0.5. The precision-recall pairs that correspond to q-value = 0.05 in each DE
workflow are circled. n = 1000 cells were used for each test case.
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DESeq2, because the low depth made it difficult to discriminate
between biological zeros and technical zeros among the read counts25.
The relative performances of Wilcoxon test and FEM for log-
normalized data (LogN_FEM) were distinctly enhanced for low
depths, whereas scVI improved limmatrend no more. For all depths,
limmatrend, LogN_FEM, DESeq2, MAST and corresponding covariate
models performed well and the use of BEC data rarely improved DE
analysis. Covariate modeling overall improved DE analysis for large
batch effects; however, its benefit was diminished for very low depths
(depth-4).

Model-free simulation tests
We devised a model-free simulation using real scRNA-seq data to
incorporate realistic and complex batch effects and avoid potential
bias toward parametric methods. First, we used the two batches from
thehumanpancreatic data35 (namedas human1 andhuman2) thatwere
produced by the same laboratory using the same sequencing platform
(inDrop36). The alpha-cells were used for our simulation. Second, we
used the twobatches fromMouseCell Atlas (MCA) thatwere produced
by different laboratories using different sequencing platforms (Illu-
mina HiSeq 250037 and NovaSeq 600038). For MCA data, the T-cells
were used for our simulation. Because these cell types contained
several subtypes, the largest clusters that were matched between
batches were selected for our simulation (see Methods). After
removing sparsely expressed genes, the overall zero rates of the pan-
creatic alpha-cell and MCA T-cell data were 83 and 73%, respectively.
Each batch dataset was randomly split into case and control groups
with several different ratios, and then 20%ofDEgenes (10%up and 10%
down) were simulated by downsampling positive counts in one group
using binomial distribution (see Methods). The F0.5-scores and
precision-recall results for both data were shown in Supplementary
Fig. 3. As expected, PVCA indicated small and large batch effects for
the pancreatic and MCA data, respectively (Supplementary Fig. 3c, d).
For the pancreatic data that had small batch effects and a low depth
(Supplementary Table 1), most integrative strategies did not improve
the DE analysis of uncorrected data, and limmatrend, DESeq2, edgeR
as well as Wilcoxon test performed well with minor differences in
pAUPR. The observationweights of ZINB-WaVEdid not improve edgeR
and DESeq2 for this low-depth data. However, for the MCA data that
exhibited large batch effects and high depth in one batch, some inte-
grative strategies and the use of observation weights were effective.
For example, edgeR-based methods exhibited relatively low pAUPRs
compared toother parametricmethods; however, theweights ofZINB-
WaVE considerably improved edgeR in pAUPR, and incorporating
batch covariate further improved the method, rendering ZW_edgeR_-
Cov the top-performer in both F0.5-scores and pAUPRs (Supplemen-
tary Fig. 3e–h).

Overall, both batch effects and sequencing depth had critical
effects on scRNA-seq DE analysis in both model-based and model-free
tests. For moderate depths, many parametric methods outperformed
Wilcoxon test, and the observation weights and covariate modeling
improved the parametric methods. Thus, ZW_edgeR_Cov, ZW_DE-
Seq2_Cov and MAST_Cov were among the best performers. However,
for very low depths, FEM, limmatrend and Wilcoxon test were the
leading methods, and covariate modeling had limited effects even for
large batch effects. For all depths, the use of BEC data rarely improved
DE analysis for sparse data.

Comparison of data distortions in DE analysis
From the simulation results, we counted the number of DE genes that
reversed their signs by eachDEworkflow to compare the extent of data
distortion. The signs of simulated DE genes declared by each DE
workflowwere comparedwith the knownground truth. For thep-value
combination method (wFisher), the p-values for each batch were
combined for both right- and left-tail directions and the sign for the

smaller combined p-value was used for each gene. Figure 4 and Sup-
plementary Fig. 4 showed the proportions of DE genes that altered
their signs by each DE workflow (referred to error ratio) for four dif-
ferent simulation results.

error ratio=
#DEgenes that altered their signs

#DEgenes
× 100 ð1Þ

Large error ratios indicated serious distortions for each DE
workflow. Overall, limmavoom, pseudobulk_DESeq2, RISC_QP and the
workflows that used BEC data tended to show relatively high error
ratios, whereas Wilcoxon test and the parametric methods such as
MAST, edgeR- and limmatrend-based methods yielded relatively
accurate results. We then compared the error ratios among the sig-
nificantly detected DE genes (q-value <0.05) (Fig. 4b, d and Supple-
mentary Fig. 4b, d). Less than 50% of simulated DE genes satisfied this
significancecutoffwithwhich thenumbers of incorrect signprediction
were dramatically reduced in most DE workflows. We additionally
applied the FC threshold |logFC|>0.5 (base 2) to the significant DE
genes. This threshold further reduced the number of detected DE
genes substantially; however, the corresponding error ratioswereonly
slightly reduced (Supplementary Fig. 5). Moreover, this FC threshold
also reduced F0.5-scores (Supplementary Fig. 6). These results indi-
cated that using logFC threshold could help select a small number of
reliableDE genes (ormarker genes), butmay not generally improveDE
and function analysis of scRNA-seq data. For a lowdepth (depth-4), the
error ratios were overall increased (Supplementary Fig. 4a, b). Dis-
tinctly high error ratios were observed for the workflows that used the
deep-learning-originated BEC data (scGen and scVI), followed by those
that used the observation weights of ZINB-WaVE.

Next, we specifically demonstrated the data distortions caused by
the 10 BEC methods by comparing the logFC of DE genes before and
after BEC without incorporating DE methods (Fig. 4e; Supplementary
Fig. 4e). The logFC values were estimated using log-normalized count
data. If a BEC method preserved the FC values, they would be aligned
closely to the straight line y = x. Thus, we used the average angular
(cosine) distance between each data point (DE gene) and this straight
line to estimate thedata distortionby eachBECmethod (seeMethods).
These angular distances for the six simulation scenarios were com-
pared between 10 BEC methods (Fig. 4f, Supplementary Fig. 4f). For a
moderate depth, Scanorama, ZW_BEC and MNN exhibited a relatively
high-level distortion. For a low-depth (depth-4), the distortion level
wasoverall increased, and scGen, ZW_BECand scVI showedahigh-level
distortion. Notably, ZW_BEC enlarged FC levels, whereas Scanorama,
MNN and RISC reduced them. scGen also enlarged FC levels for low
depths. Overall, data distortions caused by BEC methods and DE
workflows appeared worse for the lower-depth data and some BEC
methods perturbed the FC values systematically.

Effect of sparsity
We also compared the performance of DE workflows for less sparse
data.We tested scRNA-seq datawith approximately 40%zero rates and
large batch effects for both moderate (depth-77) and low (depth-4)
depths (Supplementary Fig. 7). Remarkably,manyBECmethods and all
the covariate models substantially improved the DE analysis. For both
depths, ZW_edgeR_Cov and ZW_DESeq2_Cov were among the best
performers. MAST_Cov and limmavoom distinctly performed well for
moderate and low depths, respectively. The observation weight of
ZINB-WaVE considerably improved edgeR for the moderate depth;
however, it was less effective for the low depth. When small batch
effects were tested, most BEC and covariate methods did not improve
DE analysis, and pseudobulk_limma, pseudobulk_edgeR and Raw_-
Wilcox showed a good performance for both depths. Additionally,
DESeq2 and LogN_FEM performed well for moderate depths, while
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limmavoom/limmatrend and edgeR performed well for low depths
(Supplementary Fig. 8).

Control of false positives and false discoveries
Kim and colleagues15 conducted a comprehensive analysis of scRNA-
seq data for LUAD with over 200K cells containing various cell types.
We used the data for normal epithelial cells in the seven patients with

LUAD (stage I) to compare false-positives and false discoveries
between DE workflows. The data for each patient were randomly split
into two groups with several different ratios (2:8, 3:7, 4:6, and 5:5), and
DE analysis was performed with no DE genes included. We repeated
this experiment four times, and the numbers of genes with p-value
<0.05 (false-positive) and q-value <0.05 (false discovery) were com-
pared (Fig. 5a). edgeR_wFisher exhibited the worst false positive
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controls. edgeR and edgeR_DetRate also showed relatively poor con-
trols of false positives and false discoveries, whereas ZW_edgeR
improved the results. The poor false positive control of bulk RNA-seq
tools in scRNA-seq DE analysis was also observed in the previous
benchmark study for a single batch28. Two workflows that used BEC
data (scGen_Wilcox and scGen_limmatrend) also exhibited poor false
positive control. Other methods showed a reasonable control of false
positives and false discoveries.

We then performed the same test for seven batches generated
using model-based simulation (Fig. 5b) These data did not represent
correlations between genes and had a higher depth (depth-77) com-
pared to the LUAD scRNA-seq data. However, these two results
exhibited some similarity: (1) poor controls of false positives and false
discoveries using edgeR-related methods, especially edgeR_wFisher,
(2) poor false positives controls of DE methods that used scGen BEC
data, and (3) good controls of false-positives and false discoveries
using Wilcoxon test, pseudobulk methods, MAST and ZW_edgeR. We
note that Wilcoxon test yielded a number of false discoveries pre-
viously when “independent” samples where each batch contained
either case or control condition only were analyzed26; however, it
showed a reliable false discovery control when balanced samples were
analyzed.

Detection of known disease genes: lung adenocarcinoma
We used the cells from seven patients with LUAD (stage I)15 to perform
DE analysis between tumor and normal cells for three main cell types:
epithelial cells, myeloid cells, and immune cluster composed of T
lymphocytes and natural killer cells. These cell types together occu-
pied 68.8% and 74.6% of normal and tumor cells in the LUAD scRNA-
seq data, respectively (Supplementary Fig. 9a). Because true DE genes
were not known for real data, we used the known lung cancer-related
genes as the “standard positives”. In total, 221 standard positive genes
annotated with “adenocarcinoma of lung” were obtained from two
disease gene databases, DisGeNET39 and CTD40. These genes were
weighted by the disease-association score (GDA score > 0.3) provided
by DisGeNET (seeMethods). All the genes analyzed were sorted by the
DEp-values in eachworkflow, and the cumulative sumofGDAscores of
standard positive genes, denoted as cumulative score, was compared
between DE workflows in the respective cell types (Fig. 6a–c). In other
words, we compared the weighted counts of known disease genes
included in the top-k DE ranks to compare the performance of DE
workflows.

To assess the ranks of known disease genes, we devised a trun-
cated Kolmogorov–Smirnov (KS) test that only reflected the ranks of
standard positives within the top 20% DE genes, with those in the
remaining 80% forced to be evenly distributed. This approach can be
particularly useful when selecting DE methods that are capable of
prioritizing important genes in high ranks (see Methods), whereas the
conventional KS test risks assessing a large number of middle ranks as
significant41. Even with this conservative test, as many as 25 workflows
exhibited significantly high ranks of the standard positives when epi-
thelial cells were analyzed (p-value <0.01) (Fig. 6d). To further compare
the performance of DEworkflows, the area under the cumulative score
curves for the top 20% DE genes, denoted as pAUC, was used. Many

workflows includingRISC_QP, ZW_edgeR_Cov, edgeR_Cov, Raw_Wilcox
and limmatrend_Cov exhibited similarly good pAUCs (Supplementary
Fig. 10a). Covariate modeling and observation weights onlymarginally
improved the corresponding parametric methods presumably due to
the low depth of the data (average depth of 4.48 for epithelial cells).
Interestingly, when myeloid cells and immune cluster were analyzed,
none of the workflows showed significance (Fig. 6d).

We then performed DE analysis using the bulk RNA-seq data for
LUAD from The Cancer Genome Atlas (TCGA)42 comprising 493
cancer and 53 normal samples. The corresponding cumulative
scores for the known disease genes were also represented in
Fig. 6a–c. Remarkably, DE analysis of epithelial cells for only seven
patients outperformed that of hundreds of bulk samples, demon-
strating the high potential of scRNA-seq DE analysis to discover
disease genes. Although the superiority of DE analysis of scRNA-seq
data over that of bulk RNA-seq data has been expected, it has not
been systematically analyzed. Here, we presented a statistical test
comparing the performance of scRNA-seq and bulk sample DE
analyses in detecting disease-related genes.

Figure 6e compared the ranks of 12 geneswith high disease scores
(GDA score > 0.5) for six selected DE workflows and four bulk sample
analysis methods. The six workflows for scRNA-seq data detected the
12 genes with the average rank percentiles of 31.7% – 43.8% with
ZW_DESeq2 performing the best, whereas much worse percentiles of
67.0% – 71.3% were obtained using the four TCGA analysis methods. In
particular, EGFR, KRAS, CTNNB1, and ERBB2 genes were captured
within the top 20% rank by at least four scRNA-seq workflows, and the
two genes EGFR and KRAS, which were most common in lung cancer,
were ranked in the top 5.4% and 8.9% by ZW_edgeR_Cov, respectively.
In contrast, none of the 12 genes were captured within the top 20%
ranks in the analyses of TCGA data; specifically, EGFR and KRAS were
only ranked 68.0% – 98.0% and 33.8% – 37.2%, respectively. These four
genes were known to play important roles in the development of
tumor malignancy related to RAS/RAF/MAPK and Wnt signaling
pathways43–45 (see Supplementary Notes). The top 20% DE genes for
LUADepithelial cells obtained using four selectedDEworkflows aswell
as TCGA analysis results were shown in Supplementary Data 1, which
suggested novel LUAD-related genes.

We analyzed two more large-scale bulk sample expression data-
sets for LUAD that were obtained from GEO database46 (GSE31210 and
GSE43458), where analyses of scRNA-seq data still outperformed the
analyses of these bulk sample data in detecting the known disease
genes (see Methods and Supplementary Fig. 11). Furthermore, inte-
grative DE analyses for all seven patients, except the pseudobulk
methods, surpassed the analyses for individual patients (Supplemen-
tary Fig. 12).

Detection of prognostic genes
Next, we performed the same analysis as above using another set of
disease-relatedgenes. Thesegeneswere selecteded froman integrated
survival analysis of five microarray gene expression datasets for
patients with LUAD (GSE29013, GSE30129, GSE31210, GSE37745 and
GSE50081). The Cox proportional hazards model incorporating cov-
ariates of age, sex, and tumor stage47 was applied to each dataset, and

Fig. 4 | Distortion analysis for differential expression (DE) workflows.
a Proportion of DE genes that altered their signs by each DEworkflow (error ratios)
for model-based simulation (two batches; large batch effects; depth-77). b Error
ratios for the model-based simulation for only significantly detected DE genes (q-
value <0.05). The vertical dotted lines (black) indicate the median error ratio of
Wilcoxon test (Raw_Wilcox). c Error ratios for pancreatic alpha-cell (model-free)
simulation data. d Error ratios for the pancreatic alpha-cell data for only sig-
nificantly detected DE genes. e A scatterplot of the logFC values for the model-
based simulation data with a moderate depth (depth-77) before (logFC_raw) and

after (logFC_corrected) applying batch-effect correction (BEC) methods: Combat,
limma (limma_BEC), MNNCorrect, Seurat_BEC, scMerge, ZINB-WaVE (ZW_BEC),
scVI, scGen, Scanorama and RISC. Pearson correlation, its p-value and the angular
cosine distance (Angular Dist) of scatter plot are shown for each BECmethod. f The
distortion levels for the moderate depth data as measured by the angular cosine
distance from the logFC scatterplot for six cell proportion scenarios. The lower,
center and upper bars of each boxplot represent the 25th, 50th and 75th percen-
tiles, respectively, and the whiskers represent ± 1.5 × interquartile range. n = 1050
cells were used in a, b, e, f, and n = 900 cells were used in c and d.
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the resulting p-values were combined for each gene using wFisher
considering the signs of hazards ratios (HRs)12. These integrated p-
values were adjusted for multiple testing correction, yielding 447
genes with q-value <0.05, denoted as “prognostic (standard positive)
genes”. We note that only seven of these genes were also included in
the 221 known disease genes. Many DE workflows applied to epithelial
cells except the pseudobulk methods detected the prognostic genes
with significantly high ranks, and outperformed the analyses of TCGA
data (Supplementary Fig. 13). Interestingly, several DE workflows
applied to myeloid cells also detected the prognostic genes with sig-
nificantly high ranks (p-value <0.01), suggesting the correlation of DE
genes in those cell types with the survival of patients.

Analysis of large-scale scRNA-seq data: COVID-19
We compared the performance of DEworkflows for large-scale scRNA-
seq data. Ren and colleagues have conducted a comprehensive ana-
lysis of scRNA-seq data from 196patients with COVID-1914. We used the
48 patient samples that provided fresh/frozen PBMC samples. Among
the cells from severe patients, the largest cell number was taken by
monocytes (Supplementary Fig. S14a) which were known to play a
crucial role in defending cells against viral infections48. We analyzed
the 100,361 monocyte cells to benchmark DE workflows. We

performed DE analysis between mild/moderate and severe/critical
symptoms assuming “sex” as two batch groups. “Age” has been
regarded as an important factor forCOVID-19 severity; however, 23 out
of 24 senior patients (≥60 year old) had the severe/critical symptom
which did not meet the balanced condition. We used the 133 genes
annotated with the GO term, DEFENSE_RESPONSE_TO_VIRUS
(GO:0051607) as standard positives (GO_Biological Process_2021)49,
and compared their ranks between DE workflows (Supplementary
Fig. 14b). Among them, 27 workflows detected the standard positive
genes with significantly high ranks by the truncated KS test (p-value
<0.01).We tested pseudobulkmethods by summarizing the counts for
the 48 individual patients. However, the four pseudobulkmethods did
not exhibit significant results even using 48 samples. Whereas the
analysis of pseudobulk data exhibited strict controls of false positives
and false discoveries (Fig. 5), its predictive power for disease-related
genes was not high in our analyses.

Comparison of runtimes
The running times of the 46DEworkflowswere compared in Fig. 7a for
both LUAD andCOVID-19 cases. These data representedmoderate and
large data sizeswith 7764 and 100,361 cells with 7000–8000genes. All
the DE workflows were run on a Linux machine with AMD Ryzen

0

500

1000

1500

0

100

300

500

N
um

be
r o

f g
en

es
 d

et
ec

te
d

0

100

300

400

0

50

150

200

400

200

200

100

Ps
eu

do
bu

lk_
DE

Se
q2

Ps
eu

do
bu

lk_
ed

ge
R

Ps
eu

do
bu

lk_
lim

m
av

oo
m

Ps
eu

do
bu

lk_
lim

m
at

re
nd

Co
m

ba
t_

W
ilc

ox

lim
m

a_
BE

C_
W

ilc
ox

M
NN

_W
ilc

ox

sc
M

er
ge

_W
ilc

ox
Se

ur
at

_W
ilc

ox

ZW
_B

EC
_W

ilc
ox

Ra
w_

W
ilc

ox
RI

SC
_W

ilc
ox

Sc
an

or
am

a_
W

ilc
ox

sc
Ge

n_
W

ilc
ox

sc
VI

_W
ilc

ox

M
AS

T

M
AS

T_
Co

v

DE
Se

q2

DE
Se

q2
_C

ov
ZW

_D
ES

eq
2

ZW
_D

ES
eq

2_
Co

v
DE

Se
q2

_w
Fi

sh
er

ed
ge

R_
De

tR
at

e

ed
ge

R_
De

tR
at

e_
Co

v

ed
ge

R

ed
ge

R_
Co

v

ZW
_e

dg
eR

ZW
_e

dg
eR

_C
ov

ed
ge

R_
wF

ish
er

lim
m

av
oo

m

lim
m

av
oo

m
_C

ov

lim
m

at
re

nd

lim
m

at
re

nd
_C

ov

Co
m

ba
t_

lim
m

at
re

nd
M

NN
_li

m
m

at
re

nd

sc
M

er
ge

_li
m

m
at

re
nd

Lo
gN

+l
im

m
at

re
nd

_w
Fi

sh
er

RI
SC

_li
m

m
at

re
nd

Sc
an

or
am

a_
lim

m
at

re
nd

sc
Ge

n_
lim

m
at

re
nd

sc
VI

_li
m

m
at

re
nd

DE
Se

q2
_F

EM
Lo

gN
_F

EM
DE

Se
q2

_R
EM

Lo
gN

_R
EM

RI
SC

_Q
P

Lung-epithelial cell

Model-based simulation

a

b

N
um

be
r o

f g
en

es
 d

et
ec

te
d

q−values < 0.05
p−values < 0.05

q−values < 0.05
p−values < 0.05
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Fig. 6 | Comparison of predictive powers for lung adenocarcinoma (LUAD)
genes between differential expression (DE) workflows for scRNA-seq and bulk
RNA-seq data. Cumulative disease gene scores (GDA scores) for known disease
genes up to top 20% DE gene ranks are shown for three cell types: a epithelial cells,
b myeloid cells and c T/NK cells. X-axis represents the DE gene ranks in each DE
analysis. Y-axis represents the cumulative score of known disease genes captured
within top-k gene ranks by eachDE analysis. The black-dashed slopes represent the
expected cumulative scores of known disease genes for random gene ranks. Ten
and four methods are selected for analyzing scRNA-seq and bulk/pseudobulk data,

respectively. d p-values of truncated Komogorov-Smirnov (KS) test for DE analyses
of scRNA-seq and TCGA RNA-seq data are shown for the three cell types. Black and
gray dashes represent the two significance cutoffs p-values = 0.01 and =0.05,
respectively. eRankpercentiles of the 12 knownLUADgeneswithGDA scoreno less
than0.5 are visualized for sixDEworkflowsapplied to LUADepithelial cells and four
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cells were used for the analysis of epithelial, myeloid, and T/NK scRNA-seq data,
respectively.
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Threadripper 3960 × 24-core processor and 128Gb of DDR4 memory.
The fastest were pseudobulk methods followed by limma-based
workflows. Meta-analysis workflows exhibited shorter runtimes com-
pared to naïve DE methods, as they applied a DE method to the indi-
vidual batches. edgeR-based workflows showed intermediate
runtimes. A long computation time was required for the workflows
that used BEC such as MNN and scGen, and those that used the
observation weight, which took longer than a day for COVID-19 data.
Among the recommended, LogN_FEM and limmatrend took less than
an hour even for COVID-19 data.

Similarity between DE workflows
We compared the similarity of DE analysis results between the 46
workflows for LUAD epithelial scRNA-seq data and four DE methods
applied to TCGALUADRNA-seq data. All 9,395 genes commonly found
in both scRNA-seq and RNA-seq data were ranked by the signed log(p-
value) score, -log(DE p-value) ∙ sign(logFC) to compute Spearman rank

correlation between DE workflows. We used this score to sort genes,
because log(FC) values for low-depth scRNA-seq data could be less
reliable. The correlation heatmap and hierarchical clustering results
were shown in Fig. 7b. The four TCGA analysis results formed a distinct
cluster. The edgeR-, limmatrend- and RISC-basedmethods formed the
largest cluster, followed by the cluster of DESeq2 and limmavoom
methods.The four pseudobulkmethods formeda separate cluster that
was close to the largest cluster.

We also compared the similarity of DE workflows for COVID-19
monocyte data (Supplementary Fig. 15a). The DE workflows exhibited
overall similar clustering patterns between LUAD and COVID-19 data.
For example, pseudobulk methods formed a separate cluster; edgeR-
and limmatrend-basedmethodswere close to each other; andDESeq2-
and limmavoom-based methods were also close. Besides, MAST and
Raw_Wilcoxwere clustered together in both cases. The Baker’s Gamma
correlation indicated a high similarity between the two clustering
results (0.56, p-value = 0)50. Even when we removed the covariate
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Fig. 7 | Comparison of runtimes, similarity of differential expression (DE)
workflows and othermeasures. a CPU times (log-scale) of DEworkflows taken for
analyzing lung adenocarcinoma (LUAD) epithelial cell (n = 7728) and COVID-19
monocyte (n = 100361) scRNA-seq data, each containing 10278 and 7242 genes,
respectively.bClustering heatmap of 46DEworkflows for LUADepithelial cell data

and four DE methods for TCGA LUAD data. The Spearman rank correlation of DE
genes were used as the similarity measure. c Comparison of the capability of
prioritizing disease-related genes between 46DE workflows and their performance
classified in terms of false positive/discovery controls, sign preservation of DE
genes, speed, and scalability.
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workflows, theGammacorrelation remained high (0.42, p-value = 3.2e-
04) (Supplementary Fig. 15c). We selected ten DE workflows from the
threemain clusters for LUADdata, and performed pathway analysis on
the corresponding DE results in the next section.

Pathway analysis for LUAD epithelial cell and TCGA data
We tested the pathway enrichments for scRNA-seq (epithelial
cells) and TCGA data to compare the functional relevance of each
DE analysis in cancer. Genes were ranked by their signed log(p-
value) scores and the gene-set enrichment analysis (GSEA) was
applied to the ranked genes in each DE workflow51,52. From the
pathway database “wikipathway_2021”49, 192 pathways that were
most relevant to cancer progression were selected as standard
positives. These pathways were selected on the basis of the ten
oncogenic signaling pathways53 and the seven cancer associated
processes54, as well as those including the keyword(s) tumor,
cancer, or carcinoma in their names (see Methods). We classified
these pathways into 16 categories for detailed interpretation of the
GSEA results (Supplementary Data 2).

Interestingly, the analyses of scRNA-seq and TCGA data exhibited
distinct functional categories. For example, “Ciliopathies (WP4803)” in
the “cell polarity and migration” category ranked the first or second in
all the ten scRNA-seq analyses, whereas it only ranked 21th to 62th in
TCGA analyses. “Genes related to primary cilium development (based
on CRISPR) (WP4536)”, which belonged to the same category, was
ranked the third in all the ten scRNA-seq analyses, whereas none of the
TCGA analyses detected this pathway. These results represented the
cell-type-specific perturbation of pathways in lung epithelial cells.
Moreover, “VEGFA-VEGFR2 Signaling Pathway (WP3888)” in “angio-
genesis” category was detected within top 10 ranks and the four
categories “p53”, “PI3K”, “HIPPO” and “NOTCH” in oncogenic signalling
pathways were also detected in scRNA-seq analyses. However, none of
themwere detected in TCGA analyses. In contrast, GSEA for TCGAdata
detected at least two and seven pathways in the two categories
“genomic instability” and “inflammation”, respectively, whereas GSEA
for scRNA-seq data detected at most one and two in the respective
categories. By focusing on the epithelial cell data, DE analyses of
scRNA-seq data successfully detected many canonical oncogenic
pathways as well as cell-type-specific pathways that the bulk sample
analysis missed.

The scRNA-seq DE workflows selected from each cluster (Fig. 7b)
exhibited distinct pathway analysis results. For example, Raw_Wilcox
and MAST_Cov detected as many as six and seven pathways, respec-
tively in “cell survival” category, but they detected none in “oxidative
stress” category. Additionally, DESeq2, DESeq2_FEM, and ZW_DESeq2
also detected more pathways in “cell polarity and migration” and
“oxidative stress” categories compared to other workflows, whereas
they detected none in “p53” category. The GSEA results for four
selected DEworkflows and one TCGA analysis result are available from
Supplementary Data 3.

A gross performance comparison
The capability of prioritizing disease-related genes for the 46 DE
workflows was categorized into three levels (Good, Intermediate and
Poor) for both LUAD and COVID-19 scRNA-seq data (Fig. 7c). We used
both criteria pAUC and truncated KS p-value to classify the workflows
(seeMethods). Pseudobulkmethods,many DEmethods that used BEC
data, edgeR_DetRate, limmavoom and REM and p-value combining
meta-analysis did not show a good performance. Raw_Wilcox, FEM
meta-analysis and other parametric methods performed well, but the
benefit of using observation weight was not clear for low depth-data.
We also classified theDEworkflowsusing other performancemeasures
such as false positive/discovery controls, sign preservation of DE
genes, speed and scalability (Fig. 7c). See Methods for detailed criteria
in each measure.

Discussion
Here, we benchmarked various workflows for DE analysis of scRNA-seq
data with multiple batches, and investigated the impacts of batch
effects, sequencing depth, and data sparsity on DE analysis. For sparse
data (zero rate > 80%), the use of BEC data rarely improvedDE analysis
and the effect of using batch covariate depended onboth batch effects
and sequencing depth.

For a moderate depth (depth-77), single-cell-dedicated methods
showed a good performance. For example, MAST which used zero-
inflation model incorporating the sparsity information and edgeR
combinedwith theobservationweights for zero-inflationmodel (ZINB-
WaVE) performed the best. Many parametric DE methods based on
MAST, ZW_edgeR, DESeq2, and limmatrend surpassed the widely used
Wilcoxon test, and covariate modeling of batch groups further
improved the corresponding parametric methods for substantial
batch effects. The bulk RNA-seq tool edgeR without observation
weights exhibited relatively low precisions and poor false positive
controls. For a low depth (depth-10), DESeq2, limmatrend and meta-
analysis that used log-normalized data (LogN_FEM) showed a good
performance, and covariate modeling still improved the results.
However, the use of observation weights deteriorated edgeR and
DESeq2 from this depth, as the low depth made it difficult for zero-
inflation model to discriminate biological zeros from technical zeros.
For an even lower depth (depth-4), covariate modeling hardly
improved DE analysis and observation weights had deleterious effects
on DE analysis. In this case, LogN_FEM and two naïve methods, lim-
matrend, and Wilcoxon test were among the best performers. Indeed,
in our analysis of LUAD and COVID-19 scRNA-seq data that had a low
depth (4.48and3.27, respectively), covariatemodelingonlymarginally
improved the corresponding parametric methods in detecting
disease-related genes. While the observation weight only marginally
improved edgeR andDESeq2 in LUADdata analysis, it deteriorated the
methods in COVID-19 data analysis. We also tested pseudobulk
methods which exhibited good false discovery controls and overall
discriminatory abilities in a recent study26. We observed similar good
results with pseudobulk methods for small batch effects; however,
they were highly vulnerable to batch effects and exhibited low sensi-
tivities in our tests.

Moreover, we compared the signs of DE genes declared by each
DE workflow with the ground truth to estimate the data distortions
caused by each workflow. For a moderate depth, many workflows that
used BEC, RISC_QP, and limmavoom exhibited relatively high error
ratios. For a low depth, the overall error ratios were increased, and
relatively high error ratios were observedwith theworkflows that used
theobservationweights and theBECdata obtained fromdeep-learning
methods (scGen and scVI). We further examined how BEC methods
affected scRNA-seq data before applying a DE method. The analysis
results demonstrated that BEC methods introduced additional per-
turbations (or noise) to data as well as systematic changes in the FC
values. Whether these perturbations were beneficial or not could only
be tested by comparing the performance of DE workflows in identi-
fying DE genes and their signs. Our tests showed that the artifacts
introduced by BEC methods outweighed their benefits in DE analysis,
especially for sparse and low-depth data.

For less sparse data (zero rate ≈40%), the situation changedmuch;
many BEC methods considerably improved DE analysis and covariate
modeling clearly improved DE analysis for both moderate and low
depths. Moreover, many workflows including Wilcoxon test showed
good overall discriminatory abilities (pAUPR) with minor differences.
This showed the performance of DE workflows depended on batch
effects, sequencing depth, data sparsity, as well as their interactions,
posing a challenge to choosing an optimal DE workflow for various
conditions. Thus, we suggested suitable DE workflows under different
conditions based on our simulation and real data analysis results
(Table 1).Here, the sequencing depth and sparsitywere explicitly given
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from the data in hand, whereas batch effects should be estimated from
the study design, data distribution or using PVCA. For example, if the
batch data were obtained from different research groups or sequen-
cing protocols, we might expect sizable batch effects. This could be
affirmed by using commonly used dimension reduction and visuali-
zation techniques3 and assessed using batch effects quantification
tools55. PVCA required quite a long computation time for large-scale
data; however, the timewasgreatly savedbyusing a randomly selected
subset from scRNA-seq data.

Finally, we tested whether DE workflows for multi-batch scRNA-
seq data could be used to prioritize disease-related genes better than
analyses of bulk or pseudobulk data. This was verified for two inde-
pendently derived sets of cancer-related genes and three large-scale
bulk sample datasets for LUAD. For a specific cell type (epithelial cells),
many DE workflows applied to scRNA-seq data exhibited a superior
predictive power for the cancer-related genes compared to the ana-
lyses of bulkor pseudobulkdata. Furthermore,we testedDEworkflows
for large-scale COVID-19 scRNA-seq data. Each individual in these data
belonged to multiple biological or technical categories, such as age,
sex, sequencing protocol, sample processing method and cohort
region. These factors imposed large and complex group effects on the
data, which could have deteriorated pseudobulk methods. Many of
those factors did not meet the balanced condition when the whole
data were considered for DE analysis; thus, we took themost universal
factor as a batch category to test DE workflows for large-scale data.
Many DE workflows successfully detected virus-related genes in their
significantly high ranks. Our results suggested using integrative DE
analysis of scRNA-seq data considering cells as independent replicates
rather than using bulk or pseudobulk data to discover disease-
related genes.

Methods
Fβ-score and partial area under precision-recall curve
In DE analysis of scRNA-seq data, it is often important to identify a
small number of genes (markers) that are capable of characterizing
each cell type. Moreover, it is not reasonable to expect to identify all
DE genes from highly noisy and sparse data. Thus, we use generalized
F-score (Fβ) and partial AUPR (pAUPR) that weigh precision twice
higher than recall to assess a DE analysis method. In binary classifica-
tion task, F-score is theharmonicmeanof precision and recall. For a list

of DE genes (q-value <0.05), we use Fβ (β =0.5) defined as follows:

Fβ =
ð1 +β2Þ � precision � recall
β2 � precision + recall

, β>0 ð2Þ

The Fβ-scores were calculated for both up and downregulated
genes and both results were used. To assess the general performance
of a classifier, precision-recall curvehas oftenbeen considered. Instead
of using the whole AUPR, we suggested using pAUPR (T =0.5) defined
as follows:

pAUPRT =
1
T

Z T

0
precisiont dt, 0 <T < 1 ð3Þ

Acquisition and preprocessing of gene expression data
The LUAD TCGA data were downloaded from UCSC xenabrowser
(https://xenabrowser.net/datapages/). HT-seq count data and
gene/mapping data were used for DE analysis. The curated gene
sets were downloaded from Enrichr Gene-set Library (https://
maayanlab.cloud/Enrichr/#libraries). “WikiPathway_2021_Human”
was used for pathway analysis and the 133 genes annotated with
“defense response to virus” were obtained from “GO_Biological_-
Process_2021”. LUAD and COVID-19 scRNA-seq data (GSE131907
and GSE158055, respectively) and the microarray data for LUAD
bulk samples were downloaded from NCBI Gene Expression
Omnibus database with their accession numbers (GSE43458,
GSE29013, GSE30129, GSE31210, GSE37745, GSE50081).

For both simulation and real scRNA-seq data, genes expressed
in less than 5% of the cells analyzed were excluded. For both LUAD
and COVID-19 scRNA-seq data, the cells with high mitochondrial
gene expression were removed using the PercentageFeatureSet
function from the Seurat R package; the same thresholds used in
the original studies 20 and 10% were applied to the three cell types
of LUAD and monocyte of COVID-19 data, respectively. Then, we
disabled the additional filtering in each DE analysis method. Spe-
cifically, we set the logFC threshold and minimum number of
expressed cells to zero. Several BEC methods, such as Seurat and
scMerge have used highly variable genes only which yielded cor-
rected data with a low dimension. Thus, we used all the genes for

Table 1 | Recommended differential expression (DE) workflows for different experimental conditions

Sparsity (zero rate) Depth* Batch Effects Recommended DE workflows

80% 77 Substantial MAST_Cov, ZW_edgeR_Cov, ZW_DESeq2_Cov,
scVI_limmatrend, DESeq2_FEM, limmatrend_Cov

80% 77 Small MAST, ZW_edgeR, ZW_DESeq2, Pseudobulk_limma,
DESeq2_FEM, limmatrend_Cov

80% 10 Substantial DESeq2_Cov, limmatrend_Cov, DESeq2_wFisher,
LogN_FEM, MAST_Cov, Raw_Wilcox

80% 10 Small DESeq2, limmatrend_Cov, LogN_FEM,
Pseudobulk_edgeR, Pseudobulk_limma, Raw_Wilcox

80% 4 Substantial LogN_FEM, limmatrend, Raw_Wilcox,
RISC_QP

80% 4 Small LogN_FEM, limmatrend, Raw_Wilcox,
RISC_QP

40% 77 Substantial MAST_Cov, ZW_edgeR_Cov, ZW_DESeq2_Cov,
limma_BEC_Wilcox, Scanorama_limmatrend, logN_FEM

40% 77 Small Pseudobulk_limma, Raw_Wilcox, Pseudobulk_edgeR, DESeq2, LogN_FEM

40% 4 Substantial limmavoom_Cov, limmatrend_Cov, ZW_edgeR_Cov,
ZW_DESeq2_Cov, logN_FEM, limma_BEC_Wilcox

40% 4 Small Pseudobulk_limma, limmvoom, limmatrend, Pseudobulk_edgeR, Raw_Wilcox, edgeR

In 40% sparsity cases, recommended methods were selected based on simulation results only.
*Average nonzero count in each cell after filtering sparsely expressed genes (zero rate > 0.95).
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those methods to have the corrected data with the original high
dimension to test downstream DE analysis. For bulk sample data,
we used biomaRt R package to map probe IDs to GRCh38 gene
symbols and used the protein coding genes. The ENSEMBL IDs of
TCGA data were converted to GRCh38 gene symbols.

For each DE workflow, either raw count or log-normalized count
data were used as input data as recommended for each DE method
used. All the 10 BECmethods yielded batch-corrected data in their log-
scale, which were directly used for Wilcoxon test and limmatrend.
DESeq2- and edgeR-based workflows used raw count data as input.
ZINB-WaVE yielded both the observation weights and corrected data,
and the former was used as additional input for edgeR and DESeq2
(ZW_edgeR and ZW_DESeq2). Detailed preprocessing (e.g., log-nor-
malization) of the input data for each DE workflow was described
in Supplementary Notes.

Model-based simulation for 80% and 40% zero rates
Splatter R package32 was used to simulate scRNA-seq data based on
negative binomial model. The dropout parameter values dro-
pout.mid =0.01– .05 and 3.7–3.8 were used to simulate data with
overall zero rates 40% and 80%, respectively. splatSimulate function
was used to simulate different batches. Large batch effects (batch.fa-
cLoc = 0.4 and batch.facScale = 0.4) and small group differences
(de.facLoc =0.2 and de.facScale = 0.2) were used to simulate large
batch effects. We created six scenarios for combinations of two
dropout values and three group size ratios (2:8, 3:7, 4:6). The batch
sizes with 300 and 750 cells were used for the two-batch case; and 100,
150, 200, 300, 400, 500, and 750 were used for the seven-batch case.
Approximately 2500 genes survived gene filtering and included 20%
DE genes (half up and half downregulated). No statistical method was
used to predetermine sample size.

Model-free simulation
MCA and pancreas data were used to simulate scRNA-seq data. MCA
data comprised two independent datasets obtained using different
sequencing techniques. The original data included two batches con-
taining 4,239 and 2,715 cells. We chose T-cells for our simulation.
Because T-cells included several subtypes, we selected the largest
clusters from each batch that shared marker genes identified by using
FindMarkers function in Seurat package19. Specifically, we selected
clusters with 358 and 266 T-cells from different batches. For pancreas
data, we used the clusters with 241 and 659 alpha-cells from human1
and human2 batches, respectively. Then, each batch dataset was ran-
domly divided into case and control groups with different ratios to
cover several scenarios. We then randomly selected two groups of
genes, each with 10% of all genes; one group was downsampled in the
case group and the other downsampled in the control group using
binomial distribution to simulateDE genes. The success probability for
the binomial distribution was sampled from the beta distribution with
the shape parameters α = β = 2 that are expected to generate DE genes
with the median fold-change two.

Covariate modeling
The log-linear model56,57 has been frequently used to model the read
count data as follows:

log E yij
� �� �

=αi0 +αi1Lj +
XB
b= 1

βjbIjb +
XG
g = 1

γjg Ijg ð4Þ

where yij is the read count of gene i and sample j, Lj is the library size of
sample j, I is the indicator function of a specific sample group, α’s, β’s,
and γ’s are the model parameters, B and G are the numbers of batches
and sample groups used, respectively. Then, DEof a gene canbe tested
using quasi-likelihood ratio, Wald or moderated t-test under a
logarithmic count model incorporating the batch variable9,29,30,56,58.

Principal variance component analysis
Principal variance component analysis (PVCA)33 was used to estimate
the variability of experimental effects. PVCA combines principal
component analysis (PCA) and variance components analysis (VCA) to
take advantages from both techniques. PCA reduces the dimension of
data while preserving their major variability. VCA fits a mixed linear
model using the factors of interest to estimate and partition the total
variability. Whereas PVCA is a generic approach used to quantify the
proportion of variations of different effects, it provides a handy
assessment for the batch effects before and after the correction.

Estimation of logFC values and data distortion from scRNA-
seq data
For a read count matrix [cij] for gene i and cell j, the log-normalization
of cij is defined as follows:

lognorm cij
� �

= logðcij
Lj

*104 + 1Þ ð5Þ

where Lj is the library size (total count) of cell j. Then, the log2 FC value
for gene i between case and control conditions was estimated as fol-
lows:

log FCi =
1

n0
c0ij≠0

X
c0ij≠0

lognormðc0ijÞ �
1

ngij≠0

X
cij≠0

lognormðcijÞ ð6Þ

where cʹij and cij are read counts of gene i for the case and control
groups, respectively. We compared the logFC values before and after
BEC.We used the average angular (cosine) distance between each data
point (DE gene) and the straight line y = x (Fig. 4e) as the measure of
data distortion by each BEC method.

Data distortionðBECÞ= 1
n

Xn
i= 1

1� sign logFCraw
i

� � � 1,1ð Þ, logFCraw
i , log FC

corrected
i

� �D E
ffiffiffi
2

p
� ∣∣ log FCraw

i ,log FCcorrected
i

� �
∣∣L2

24 35
ð7Þ

Collection of known disease genes
Two disease gene databases, DisGeNET and CTDwere used to retrieve
known lung cancer genes. In DisGeNET, 2438 genes were annotated
with term, “Adenocarcinoma of the lung (disorder)”. DisGeNET pro-
vides gene-disease association score (GDA score), which is weighted
sum of the number of each level/type of sources, and the number of
publications supporting the association. Among the 2438 genes, we
have selected only 207 genes with GDA score 0.3 or larger. In CTD, we
have selected 158 genes that were annotatedwith “Adenocarcinomaof
Lung” and curated as “Marker/mechanism” in “Direct.Evidence” field.
Among them, 144 genes were also selected from DisGeNET and their
median score was given to the rest 14 genes that were exclusively
selected fromCTD. In total, 221 genes were used as standard positives.

Categorization of standard positive pathways in lung cancer
The standard positive pathways were categorized on the basis of ten
oncogenic signaling pathways53 and seven cancer-associated
processes54. The ten oncogenic signaling pathways included (1) cell
cycle, (2) Hippo signaling, (3) MYC signaling, (4) NOTCH signaling, (5)
oxidative stress response/NRF2, (6) PI-3-Kinase signaling, (7) receptor-
tyrosine kinase (RTK)/RAS/MAP-Kinase signaling, (8) TGFβ signaling,
(9) P53 and (10) β-catenin/WNT signaling. Here, “MYC signaling”
categorywas not detected by any analysis, sowas excluded. The seven
cancer-associated processes included (1) cell proliferation, (2) cell
polarity andmigration, (3) cell survival, (4) cellmetabolism, (5) cell fate
and differentiation, (6) genomic instability, and (7) tumor micro-
environment. Among them, “cell cycle”, “cell proliferation” and “cell
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fate anddifferentiation”were combined into one category, and “tumor
microenvironment”was divided into its subcategories, “inflammation”
and “angiogenesis”. Lastly, pathways that included the keywords,
tumor/cancer/carcinoma in their names were collected into a separate
category, where less relevant pathways such as retinoblastoma or
glioblastoma were excluded. In total, 190 standard positive pathways
for cancer were classified into 16 categories (Supplementary Data 2).

Analysis of LUAD bulk-sample expression data
DE analysis for TCGA LUAD bulk RNA-sequencing data between 493
cancer and 53 normal samples were performed incorporating covari-
ates age, sex and smoking history using fourmethods, DESeq2, edgeR,
limm, and limmatrend methods. 16,129 genes with five or larger mean
count that were commonly found in gene-filtered epithelial scRNA-seq
data were analyzed. Two LUAD microarray expression datasets
(GSE31210 andGSE43458) were also analyzed. The former consisted of
226 tumor and 15 normal samples and covariates of age, sex, and
smoking history were incorporated in DE analysis. The data were
normalized by MAS5 and the log-normalized data were used for lim-
matrend. The latter consisted of 80 cancer and 30 normal samples.
Only smoking history was available and used as covariate. RMA nor-
malization and limmatrend were used.

Criteria for classifying performance
Standard positive gene detection. We used the ranks of pAUC and
truncatedKS p-values to classify the performance into three categories
as follows:

• Good: Truncated KS p-value < 0.01 and top 10 in pAUC
• Intermediate: Cases other than Good and Poor
• Poor: Truncated KS p-value > 0.01 or pAUC rank > 20

False Positive/FalseDiscovery.We used the number of falsepositives
and false discoveries to classifiy the performance into three categories
as follows

• Good: Zero median false discovery and the median number of
false positives not larger than 5% of analyzed genes for both low-
and moderate-depth data (Fig. 5).

• Intermediate: Cases other than Good and Poor
• Poor:Median false discoveries larger than zero for both low- and

moderate-depth data AND median number of false positives
larger than 5% for either low- or moderate-depth data.

Sign preservation. Because the ranges of values were different
between the results of datasets, we think of aggerating the relative
difference between boxplots/groups of performance values of meth-
ods. The percentage of errors (P) is calculated based on the difference
between medians (DBM) and the overall visible spread (OVS) as:

P =
DBM
OVS

× 100 ð8Þ

• Good: P < 30%
• Intermediate: between Good and Poor
• Poor: P > 60%

Speed. We used LUAD epithelial cell and COVID-19 monocyte data to
compare the computing times between DE workflows and classified
them based on their ranks as follows:

• Good: Runtime of COVID-19 < 10mins
• Intermediate: between Good and Poor
• Poor: Runtime for LUAD data > 30mins or runtime for COVID-19

> three hours

Scalability. We compared the proportionality between the computing
time and the data size. We estimated this coefficient for the square

root of the number of data entries (cells × genes). For dataset i
including Ni cells and Mi genes, the computing time Ti (seconds) of
method K was modeled as

Ti =αK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni �Mi

p ð9Þ
The scalability ofmethod Kwas classified based on the coefficient

αK as follows:
• Good: αK < 1
• Intermediate: between Good and Poor
• Poor: αK > 2

Truncated Kolmogorov-Smirnov test
Kolmogorov-Smirnov (KS) test assesses the maximum distance
between empirical and null cumulative distribution functions (cdf).
The empirical distribution was generated by accumulating the gene
scores of standard positives in the order of DE gene p-values and the
test statistic is given as follows:

Fx uð Þ=

Pu
i = 1

wiP
wi

= cdf of empirical distribution
ð10Þ

FyðuÞ= cdf of null hypothesis ð11Þ

KS statistic (right-tailed). D+ =maxðFxðuÞ � FyðuÞÞ where wi’s are the
weights of standard positive genes. If the ith gene does not belong to
standard positive genes, wi =0.

A drawback of KS test is that the maximum discrepancy D+ can
occur for a low gene rank41. Because we are interested inmethods that
are capable of prioritizing standard positive genes in high ranks, we
modified the statistic so thatD+ can occur only within top 20% ranks as
follows:

wKS statisticðright� tailedÞ : eD+
= maxðfFx uð Þ � Fy uð ÞÞ ð12Þ

fFxðuÞ=
Fx uð Þ, u<N

Fx Nð Þ+ ðu�NÞ
ðumax�NÞ � 1� Fx Nð Þ� �

, u≥N

(
ð13Þ

where umax is total number of genes N corresponds to the top 20%
rank. In other words, the ranks of standard positives outisde the top
20% DE genes were uniformized not to affect the test result.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single-cell, bulk sample and pathway data used in this study are
available publicly and described in the Methods section. The scRNA-
seq and microarray data were downloaded from the GEO database46

through their accession numbers (scRNA-seq LUAD: “GSE131907”;
scRNA-seq COVID-19: “ GSE158055”; microarray LUAD: “GSE29013”,
“GSE30129”, “GSE31210”, “GSE37745”, “GSE43458” and “GSE50081”).
TCGA LUAD RNA-seq data were downloaded from the UCSC xenab-
rowser (https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.
htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.
net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%
3A443). Pathway data (WikiPathway_2021_Human and GO_Biological_-
Process_2021) were downloaded from Enrichr Gene-set Library49

(WikiPathway_2021_Human: https://maayanlab.cloud/Enrichr/
geneSetLibrary?mode=text&libraryName=WikiPathway_2021_Human;
GO_Biological_Process_2021: https://maayanlab.cloud/Enrichr/
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https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=WikiPathway_2021_Human
https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=WikiPathway_2021_Human
https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=GO_Biological_Process_2021


geneSetLibrary?mode=text&libraryName=GO_Biological_Process_
2021). The collection of known disease genes were downloaded from
two public databases (DisGeNET: https://www.disgenet.org/; CTD:
http://ctdbase.org/). All other relevant data supporting the key find-
ings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable
request. Source data are available at Zenodo (https://doi.org/10.5281/
zenodo.764561459).

Code availability
The R and Python codes used for our simulation tests are available at
both GitHub (https://github.com/noobCoding/Benchmarking-
integration-of-scRNAseq-differential-analysis) and Zenodo (https://
doi.org/10.5281/zenodo.7608396).
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