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representations of dynamic
stimuli in hierarchical neural
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Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan,

Republic of Korea

Introduction: E�cient coding that minimizes informational redundancy of neural

representations is a widely accepted neural coding principle. Despite the benefit,

maximizing e�ciency in neural coding can make neural representation vulnerable

to random noise. One way to achieve robustness against random noise is

smoothening neural responses. However, it is not clear whether the smoothness

of neural responses can hold robust neural representations when dynamic stimuli

are processed through a hierarchical brain structure, in which not only random

noise but also systematic error due to temporal lag can be induced.

Methods: In the present study, we showed that smoothness via spatio-temporally

e�cient coding can achieve both e�ciency and robustness by e�ectively dealing

with noise and neural delay in the visual hierarchy when processing dynamic visual

stimuli.

Results: The simulation results demonstrated that a hierarchical neural network

whose bidirectional synaptic connectionswere learned through spatio-temporally

e�cient coding with natural scenes could elicit neural responses to visual moving

bars similar to those to static bars with the identical position and orientation,

indicating robust neural responses against erroneous neural information. It

implies that spatio-temporally e�cient coding preserves the structure of visual

environments locally in the neural responses of hierarchical structures.

Discussion: The present results suggest the importance of a balance between

e�ciency and robustness in neural coding for visual processing of dynamic stimuli

across hierarchical brain structures.

KEYWORDS

dynamic visual motion, hierarchical structure, spatio-temporally e�cient coding,

robustness, smoothness

1. Introduction

The efficient coding hypothesis, which has long been supported by researchers,

suggests that information is coded in neural activity with minimal redundancy (Attneave,

1954; Barlow, 1961; Laughlin, 1981; Simoncelli and Olshausen, 2001). According to this

hypothesis, each neuron codes distinct information to minimize informational redundancy.

However, neural activity is intrinsically noisy, and a ubiquitous trial-to-trial variability is

unavoidable (Borst and Theunissen, 1999; Faisal et al., 2008; Nogueira et al., 2020). As such,

if each neuron codes distinct informationmaximizing efficiency, overall neural coding would

be vulnerable to noise because corrupted information coded in a single neuron could not be

corrected by the compensating activities of other neurons.

The vulnerability of neural coding due to the noise in a single neuron’s activity can

be reduced by having multiple neurons code the same information together (Chu et al.,

2016; Pryluk et al., 2019). This robust coding, defined in the present study as robustness
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against malfunctions of brain systems, is reflected by correlations

among the firing activities of a group of neurons (Montani et al.,

2007; Pryluk et al., 2019). Moreover, recent studies suggest that

neural coding in the brain can be characterized by the degrees

of efficiency and robustness (Chu et al., 2016; Stringer et al.,

2019), with an efficiency-robustness trade-off observed in various

brain regions and species. For instance, a study demonstrated

that efficiency is relatively more pronounced in cortical regions

and humans, whereas robustness is relatively more pronounced in

subcortical regions and non-human primates (Pryluk et al., 2019).

Then, how can interconnected neurons achieve both efficiency

and robustness? There can be several neural coding approaches

to achieve the efficiency-robustness balance. One simple approach

to increase robustness while maintaining existing efficiency is

to increase the number of neurons. However, this is against

the energy efficiency of metabolism (Sengupta et al., 2013;

Yu et al., 2016) because it increases energy consumption for

processing the same information. Another possible approach

is to make neural coding of information smooth such that

neural representations of similar stimuli are similar (i.e., similar

firing patterns of different neurons) to each other. Smooth

neural representations allow for informational redundancy across

neurons to some extent, gaining robustness at the expense of

efficiency. A recent study demonstrates that neural coding based

on smooth neural representations can elucidate the efficiency-

robustness balance maintained in the visual cortex (Stringer et al.,

2019).

It is well-documented that the biological visual system

consists of a bidirectionally interconnected hierarchical structure

(Briggs and Usrey, 2011; Harris et al., 2019; Hilgetag and Goulas,

2020; Semedo et al., 2022). Yet, it is unknown whether smooth

neural representations can achieve robust neural coding when

a hierarchical visual system responds to dynamic stimuli (e.g.,

moving objects), where neural processing of dynamic stimuli can

cause a transmission delay occurring across hierarchies (Berry

et al., 1999). Due to the transmission delay, when a dynamic

stimulus is represented in the hierarchical visual system, an

upper hierarchy carries relatively older information, whereas

a lower hierarchy carries more recent information. As such,

inter-hierarchy pathways continuously convey desynchronized

information between hierarchies, causing errors in neural

representations of stimuli at each hierarchy (Figure 1). This kind

of error is not random but better regarded as systematically

biased neural information delivered by desynchronized neural

activities from other hierarchies. It is more likely to occur in

a bidirectional hierarchical structure where neurons at each

hierarchy send information to both upper and lower hierarchies

simultaneously. Since the brain area processing visual information

has a bidirectionally interconnected hierarchical structure (Briggs

and Usrey, 2011; Harris et al., 2019; Hilgetag and Goulas, 2020;

Semedo et al., 2022), it would be important to understand how

the hierarchical visual system deals with the erroneous neural

information when processing dynamic stimuli. With predictive

coding defined on a bidirectional hierarchical structure (Rao and

Ballard, 1999), it has been proposed that this problem can be solved

by predicting more distant future neural responses of different

hierarchies (Hogendoorn and Burkitt, 2019). However, to the best

of our knowledge, no solution has been proposed to grapple with

this problem with efficient coding.

In our previous study, we demonstrated that a new efficient

codingmodel—spatio-temporally efficient coding (STEC) that adds

temporal smoothing to efficient coding—enables robust neural

representations of static visual images within a hierarchical visual

system (Sihn and Kim, 2022). With STEC, neural responses at

each visual hierarchy form smooth temporal trajectories. If the

external stimulus changes to be static or smooth, smoothing the

temporal trajectory of the neural responses is to make neural

responses to similar stimuli similar, thus creating smooth neural

representations. As STEC inherently maintains efficient neural

coding by maximizing the entropy of neural activities in a

population, smooth neural representations by STEC can preserve

the efficiency-robustness balance by gaining robustness.

However, it remains unknown whether STEC can still hold

robustness in neural representations of visually moving objects

by overcoming desynchronized erroneous neural information

transmitted across bidirectional visual hierarchies. While our

previous study proposed a hierarchical neural network model to

represent static stimuli, how a hierarchical neural network can

also represent dynamic stimuli that continuously change over

time becomes a challenging problem. Therefore, the present study

aims to investigate whether smoothing by STEC can make neural

representations of visually moving objects robust, thus maintaining

the efficiency-robustness balance.

2. Materials and methods

2.1. Dataset

The natural scene image dataset created by van Hateren and

van der Schaaf (1998) was used for simulations. The dataset was

publicly available at http://bethgelab.org/datasets/vanhateren/. The

images were downsized to 128 × 192 pixels and rescaled between

zero and one. We basically used the natural scene image dataset for

analysis in the previous manuscript. According to the comment, we

also verified the proposed model using a different dataset of object

images. We used Caltech 101 object image dataset (Li et al., 2022),

which was publicly available at https://data.caltech.edu/records/

mzrjq-6wc02. Since the images in this dataset vary in size, we

resized them to 128× 192 pixels. Moreover, a total of 4,212 images

were randomly selected, and the pixel values were rescaled between

zero and one.

2.2. Spatio-temporally e�cient coding

To add smoothness to efficient coding, we used spatio-

temporally efficient coding (STEC) developed in our previous study

(Sihn and Kim, 2022) with some modifications (Figures 2A, B).

The present study focuses on a hierarchical structure that

consists of the visual input hierarchy, lower hierarchy, and higher

hierarchy (Figure 2A). Information processing on the hierarchical

structure is defined as the transformation from neural responses

at each time step to neural response at the next time step over the
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hierarchical structure. Specifically, the information processing from

time t − 1 to t is a transformation such that:

ft :Xinput, t−1 × Xh=1,t−1 × . . . × Xh=H,t−1 → Xinput,t

× Xh=1,t × . . . × Xh=H,t (1)

where Xh,t represents a set of all possible neural responses at
hierarchy h and time t in vector form. The restriction of ft to Xh,t

can be represented as:

ft |Xh,t
= σ

(

WT
h+1,hxh+1,t−1 +WT

h,hxh,t−1 +WT
h−1,hxh−1,t−1 + bh

)

(2)

where xh,t−1 ∈ Xh,t−1 denotes a specific neural response at

hierarchy h and time t − 1 in vector form,Wh′ ,h denotes a synaptic

weight matrix from hierarchy h′ to h and T denotes the transpose

of a matrix, bh denotes a bias term in vector form, and σ (·) denotes

the sigmoid function. So xh,t = ft |Xh,t
∈ Xh,t is a neural response

to be used for analysis and represents the firing activity of neurons.

For instance, xh,t represents the vector of thenormalized firing rates

of neurons located at hierarchy h.

Being used as a neural coding scheme on the hierarchical

structure, STEC achieves efficient and robust neural

representations by learning synaptic weights for the information

processing above. Specifically, STEC learns weights by minimizing

two objectives: LSpatial and LTemporal. LSpatial is the negative

informational entropy of neural responses. The minimization of

LSpatial is, in fact, the objective of existing efficient coding (Barlow,

1961; Laughlin, 1981). LTemporal is the difference between neural

responses of adjacent time steps. The minimization LTemporal

renders the temporal trajectory of neural responses smooth

(Figure 2B). The objective L of STEC is then a combination of

LSpatial and LTemporal:

L = LTemporal + λLSpatial (3)

where λ is a balancing parameter. Since LSpatial achieves efficiency

and LTemporal achieves robustness, the objective L of STEC can

represent the efficiency-robustness balance. In the present study,

we empirically set λ = 5, which maintained a balance between

efficiency and robustness in neural representations. We also set

λ = 1, 000 to lead STEC to be an efficient coding without the

smoothness, building a control condition to be compared with

balanced STEC—hereby referred to as spatially efficient coding

(SEC). Finally, we set λ = 0.01 to create another condition

with excessive smoothness with impoverished (spatial) efficiency—

hereby referred to as temporally efficient coding (TEC).

Since L = LTemporal + λLSpatial is differentiable, the

objective L can be minimized by the gradient descent method.

In the present study, we used a stochastic gradient descent

method with momentum via Adam optimizer (Kingma and

Ba, 2015). The parameters of the Adam optimizer were set as

α = 0.001, β1 = 0.9, β2 = 0.999, and ǫ = 10−8.

Minimization via the Adam optimizer persisted 104 iterations

for one repetition. We restarted the repetition five times.

For each minimization iteration above (one of 104 iterations),

information processing lasted on nine time steps (i.e., time step

∈ [1, 9]), as we assumed that a gaze shifted 9 times in every

natural scene image (Figures 2D, E). The minibatch size was set

to 100.

By controlling the distribution of neural responses, we made

them sparse (upper hierarchy) or non-sparse (lower hierarchy)

(Figure 2C). It corresponds to non-sparse neural responses of the

subcortical neurons (lower hierarchy) and sparse neural responses

of the cortical neurons (upper hierarchy), respectively (Simoncelli,

2003). Neural responses of the upper hierarchy were sparse due

to the following reason. The objective LSpatial is the negative

informational entropy of neural responses. To calculate LSpatial, we

need a probability density function, which can be replaced with a

ratio between the probability density of the neural response and

the compensation density. In order to lower LSpatial, the probability

density function should be as uniform as possible. If we increase

the compensation density at near zero and at the same time make

the probability density function uniform, consequently, it makes

neural responses become close to 0 (i.e., sparse neural responses).

FIGURE 1

Erroneous information transmission. Schematic diagram showing the occurrence of erroneous information on a bidirectional hierarchical structure

with information transmission time delay. The black dot in the bottom row indicates the position of a moving object. It is information corresponding

to the position of a moving object. Arrow indicates the information transmission. As the information is transmitted through the hierarchies, the

position information is delayed by one time step. If there is no erroneous information transmission, the information at the lower hierarchy of the 4th

time step is I3, indicating information transmission is delayed by one time step. Due to the top-down information transmission from the upper

hierarchy of 3rd time step, however, the information I1 is added to I3. This is an erroneous information.
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In the present study, the number of neurons in each hierarchy was

set to 64.

The mathematical details of STEC are described in the

Supplementary material. All simulation and analysis codes for the

present study are available at https://github.com/DuhoSihn/STEC_

dynamic.

2.3. Stimuli

A moving image Xinput was composed of a series of parts (64×

64 pixels) of a natural scene image, where each part was obtained by

moving a gaze at a constant velocity starting at a random location

over the whole image (128×192). Themagnitude of the velocity was

FIGURE 2

Spatio-temporally e�cient coding. (A) The model structure of spatio-temporally e�cient coding for hierarchical brain (Sihn and Kim, 2022). There

are three kinds of information transmission (black arrow): Bottom-up (from lower to upper arrows), recurrent (loop arrows), top-down (from upper

to lower arrows). (B) Spatio-temporally e�cient coding (Sihn and Kim, 2022). Inference is bidirectional (bottom-up, top-down, and recurrent)

information transmissions which are indicated by black arrows. These black arrows render fast neural representations through learning. Learning at

each hierarchy is indicated by light blue (visual input), orange (lower hierarchy), and purple (upper hierarchy) colors. The same color-coded arrows

are optimized by learning at each hierarchy. The objectives of learning are to minimize temporal di�erences (in visual input, lower hierarchy, and

upper hierarchy; blue color) and to maximize responses entropy (in lower and upper hierarchy; red color). (C) Architecture of visual hierarchy with

depth 2 in simulations. Units in the lower hierarchy set up to have regular neural responses and units in the higher hierarchy set up to have sparse

neural responses. These correspond to lower and upper hierarchy neural responses, respectively. Units in adjacent hierarchies are fully connected. (D)

Example movement of visual scene on the natural scene image for learning. Yellow square indicates each visual scene. (E) Spatio-temporally e�cient

coding for moving visual scene. Each yellow square corresponds to one of yellow squares in D. Magenta arrow indicates information transmission.
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randomly selected from an integer between 0 and 4 pixels per time

step. If the selected velocity magnitude was too large tomove within

the whole image, the velocity magnitude was adjusted to be the

maximummagnitude that allowed moving within the whole image.

The direction of the velocity was randomly selected in the two-

dimensional pixel space, and speed was kept as 0–4 pixels per time

step with L∞ norm (the maximum of horizontal moving distance

and vertical moving distance) (Figures 2C–E).

A moving bar stimulus was created as a 64 × 64 image with

a value of 1 on the bar and 0 elsewhere. Bar stimuli had eight

orientations: 0, π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, and 7π/8

(rad). For each orientation, we created 41 bar stimuli at different

positions covering the whole image uniformly. At each position, the

length of a bar extended from one edge to the opposite of an image.

The width of the bar was kept constant across eight orientations

and occupied four pixels in the case of the horizontal orientation

(Figure 3A). Over these 41 positions, we moved the bar stimulus

smoothly or randomly. A smoothly moving bar in a certain

orientation sequentially moved from one end position to the other

end, taking 41 time steps to present a smoothly moving bar. The

same bar stimulus also moved in a reversed order. For convenience,

we hereafter denoted one of these bidirectional movements as

moving forward and the other as moving backward, although

there is no specific reason to call one as forward and the other

as backward. These bidirectional movements of a bar stimulus

generated a total of 16 smoothly moving bar stimuli. A randomly

moving bar moved from one position to another randomly with no

repeated visit to the same position, thus appearing at each of the

41 positions once and taking 41 time steps too. We generated 41

randomly moving bars in each of the eight orientations.

A static bar stimulus was the continuous presentation of one

of the moving bar images at certain timing. We selected an

aforementioned moving bar image at a specific point in time and

continuously presented that single image with no change in time.

2.4. Distance between neural responses

To measure the robustness of neural coding, we measured

the Euclidean distance between the neural responses to static

and moving bars in the same positions and orientations. Neural

responses to a moving bar transmit erroneous information to other

hierarchies. On the contrary, neural responses to a static bar do

not carry such erroneous information. Therefore, neural coding

is deemed to be robust to erroneous information if the distance

between neural responses to static and moving bars at the same

position is small. The distance between neural responses to bar

stimuli (one is the static bar and another is the moving bar)

with different positions and the same orientation was measured

by calculating the Euclidean distance between the 64-dimensional

neural response vectors (Figure 4).

2.5. Decoding analysis

As another method to assess the robustness of neural coding,

a neural decoding model was built by using neural responses to

a static bar. This decoding model was trained to estimate the

information of a static bar (i.e., position or orientation) from neural

responses. Then, neural responses to a smoothly moving bar were

used as a test set to measure the accuracy of the trained model.

Accurate decoding could signify that the neural representations of

the bar stimulus for both moving and static bars are similar to

each other, indicating that neural coding is deemed to be robust

to erroneous information.

In the simulation of the present study, since the stimuli

contained only several bars and the neural responses to the bar

stimuli were deterministic, the size of neural response data for

decoding was limited to training a decodingmodel. To augment the

neural response data, random noise was added to the bar stimuli:

Sǫ = S+ ǫ (4)

where S is an original image vector, Sǫ is the image vector with

randomnoise, and ǫ ∼
−−−−−−→
N

(

0, σ 2
)

for σ = 0.025, 0.05, 0.1, 0.2, 0.4.

Through this treatment, 300 different neural responses to one

bar stimulus were obtained in both the training and test sets. In

general, when it costs to obtain data samples, a training set includes

a relatively large number of samples, and a test set includes a

relatively small number of samples, in order to assign a sufficient

amount of data to fully train amodel. In the present study, however,

we used the same size of training and test sets because it costs little

to synthesize data samples. Specifically, a sample size of 300 was

sufficient to train the model and another 300 samples were used for

the test.

Nine centered bars in each orientation were selected to perform

decoding for nine different bar positions in the same orientation.

Therefore, the chance level of position decoding accuracy was 1/9.

Three centered bars in each orientation were selected to perform

decoding for eight different orientations. Therefore, the chance

level of orientation decoding accuracy was 1/8.

Decoders with two different characteristics were used. For

one, the naïve Bayes, which decodes by estimating the mean and

variance of the data, was selected. Another was linear discriminant

analysis (LDA), which decodes data without estimating the

distribution of the data. We additionally applied a support vector

machine (SVM) with linear kernel, decision tree (DT), and

ensemble classifier (EC) for decoding to compare machine learning

techniques more comprehensively. In addition, a 5-layer neural

network (NN) was used for decoding to investigate the feasibility

of using a basic deep learning technique (see Figure 5).

3. Results

3.1. Smooth neural representations for bar
stimuli via spatio-temporally e�cient
coding

We compared STEC to a control condition with spatially

efficient coding (SEC) only. SEC was implemented by amplifying

LTemporal in STEC. First, we examined whether STEC generated

smooth neural representations. We observed that the neural

responses to a smoothly moving bar changed smoothly in both

lower and upper hierarchies. In contrast, with SEC, the change of
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FIGURE 3

Smooth neural representations for bar stimuli. (A) Bar stimuli with eight orientations. (B) Neural responses for smoothly moving bar stimuli. Smooth

changes in the vertical direction of neural responses indicate smooth neural representations. STEC indicates spatio-temporally e�cient coding. SEC

indicates the control condition that spatially e�cient coding alone. (C) Correlation (over 64 units) between neural responses to moving bar stimuli

with di�erent positions. Large correlations indicate the smooth changes of neural responses in (B). That is, this is a quantification of the smoothness

of the neural response in (B). (D) The ratio of statistically significant positive correlation (over time) between the temporal trajectories of the neural

responses of each unit for smoothly moving bar (Pearson correlation, p < 0.05). Error bar indicates the SEM. (E) The absolute value of correlations

(over time) between the temporal trajectories of the neural responses of each unit for a smoothly moving bar. Three black horizontal lines in each

box indicate 25%, 50%, and 75% levels of data, respectively.

the neural responses to the smoothly moving bar was not smooth

(Figure 3B). To quantify the smoothness of neural responses,

we calculated pairwise correlations among the neural responses

of 64 units to two moving bar stimuli at different but adjacent

positions. Since the bar moves smoothly, the neural responses to an

adjacent bar are temporally adjacent neural responses. Therefore,

higher correlations between neural responses to adjacent bars

indicate temporally more similar neural responses, meaning

smoother trajectories of neural responses. STEC-generated

neural responses showed higher correlations than SEC-generated
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FIGURE 4

Distance between neural responses denoting robust neural representations. Distances between neural responses for static and smoothly moving bar

stimuli with di�erent positions and the 0 rad orientation: (A) STEC and (B) SEC. Distances between neural responses for static and randomly moving

bar stimuli with di�erent positions and the 0 rad orientation: (C) STEC and (D) SEC. A low distance value of diagonal entries indicates consistent

neural response between static and moving bar stimuli, denoting robust neural representations. Gradually increasing distances of o�-diagonal

entries around diagonal entries indicate that neural responses locally preserve the structure of the external world. Consistent results were obtained

for all orientations.

neural responses (Figure 3C). This suggests that SEC exhibited

higher efficiency.

Previous studies on smoothness evaluated robustness against

random noise (Stringer et al., 2019) by verifying correlated activity

between neuronal units (Montani et al., 2007; Pryluk et al.,

2019). Therefore, we also evaluated whether activities between

neuronal units were correlated in the presence of smoothness

induced by spatio-temporally efficient coding. The correlation

between the temporal trajectories of the neural responses of

each unit to a smoothly moving bar in each orientation was

calculated. With STEC, there were more statistically significant

(Pearson correlation, p < 0.05) positively correlated pairs of

neuronal units (Figure 3D) than SEC (rank-sum test, p =

2.7 × 10−4 and p = 7.2 × 10−87, for lower and upper

hierarchies, respectively). Also, the absolute value of correlations

was higher with STEC than with SEC (Figure 3E) (rank-sum

test, p ≈ 0 and p = 1.6 × 10−63, for lower and upper

hierarchies, respectively).

3.2. Robust neural representations via
smoothness

The distance between neural responses for static and moving

bars in the same position was small in both lower and upper

hierarchies with STEC (Figure 4A), compared to that with SEC

(Figure 4B), indicating robust neural coding against erroneous

information by STEC. In addition, distances in off-diagonal

entries around diagonal entries increased gradually, indicating that

neural responses locally preserve the structure of the external

world (Figure 4A). In contrast, the neural responses in the

upper hierarchy to a randomly moving bar were no longer

smooth, showing that the neural coding was not robust to

erroneous information when a stimulus was not smoothly moving

(Figure 4C).

Decoding the position of a bar resulted in higher accuracy with

STEC than with SEC in lower and upper hierarchies, regardless of

decoder type (Figures 5A, C). Decoding the orientation of a bar

resulted in higher accuracy with STEC than with SEC regardless

of the decoder type (Figures 5B, D).

3.3. The balance between e�ciency and
robustness

We denoted TEC as the condition that exhibits excessive

smoothness to achieve robustness with the lack of efficiency. In this

condition, the neural responses to a smoothly moving bar changed

too smoothly to discriminate neural responses to adjacent bars in

both lower and upper hierarchies (Figure 6A). This may lead to

indistinguishable neural responses to different stimuli. To confirm

this, a position decoding analysis was performed using neural

responses to smoothly moving bars on both the training and test

sets. The details of the position decoding were identical to those in

the previous subsection (Figure 5A, see also Materials andMethods

section), except for using neural responses to smoothlymoving bars
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FIGURE 5

Decoding of bar stimuli denoting robust neural representations. (A) Position decoding accuracy at various noise levels for nine centered-bar

positions. The training set is the neural responses for static bar stimuli and the test set is the neural responses for smoothly moving bar stimuli. The

black dash-dotted line indicates the chance level. Natural scene dataset. (B) Orientation decoding accuracy at various noise levels for eight

orientations of three centered bars. A training set is the neural responses for static bar stimuli and a test set is the neural responses for smoothly

moving bar stimuli. The black dash-dotted line indicates the chance level. Natural scene dataset. (C) Similar to A, but object dataset. (D) Similar to (B),

but object dataset. A high accuracy value indicates consistent neural response between static and moving bar stimuli, suggesting robust neural

representations. Noise levels are the standard deviations of the added random noise (see Materials and Methods). Decoding is performed with a naïve

Bayes classifier, linear discriminant analysis (LDA), support vector machine (SVM), decision tree (DT), ensemble classifier, and 5-layers neural network

(NN).

FIGURE 6

The importance of a balance between e�ciency and robustness. (A) Neural responses for smoothly moving bar stimuli. TEC indicates temporally

e�cient coding, which exhibits excessive smoothness to achieve excessive robustness and lack e�ciency. (B) Position decoding accuracy at various

noise levels for nine centered-bar positions. Both training and test sets are the neural responses for smoothly moving bar stimuli. Noise levels are the

standard deviations of the added random noise (see Materials and Methods). Decoding is performed with a naïve Bayes classifier, linear discriminant

analysis (LDA), support vector machine (SVM), decision tree (DT), ensemble classifier, and 5-layers neural network (NN).

in both the training and test sets. The decoding result showed that

the position decoding accuracy was lower in TEC than in STEC,

indicating that excessive robustness led to less distinguishable

neural responses to different stimuli (Figure 6B). This result

suggests that a balance between efficiency and robustness

is important.

When the coding objective has only spatial efficiency with no

temporal efficiency (i.e., SEC), the efficiency increases, but the
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robustness decreases (Figures 4, 5). Conversely, when the coding

objective has only temporal efficiency with no spatial efficiency

(i.e., TEC), the redundancy of neural coding is too large to achieve

the required efficiency (Figure 6). Therefore, when it is necessary

to emphasize brain efficiency by reducing redundancy, it is better

to emphasize the spatial efficiency of the STEC more, and when

it is necessary to emphasize robustness, it is better to emphasize

the temporal efficiency of the STEC more. This may elucidate the

actual efficiency-robustness trade-off observed across brain regions

or species (Pryluk et al., 2019).

4. Discussion

It is known that efficiency and robustness are in balance in

neural activity. To understand how the brain maintains such

a balance, it is useful to employ a computational model to

emulate the brain functions with both efficiency and robustness.

Efficient coding has been proposed as a neural coding principle

to achieve efficiency, defined as minimizing informational

redundancy. Also, the smoothness of neural representations

is known to improve robustness (defined in the present study

as robustness against malfunctions of brain systems) against

random noise (Stringer et al., 2019). However, in the case

when erroneous neural information is transmitted across the

brain hierarchy due to dynamic stimuli, it is unknown whether

smoothness can sustain the robustness of neural representations

for dynamic stimuli. In the present study, we showed that

spatio-temporally efficient coding (Sihn and Kim, 2022) could

achieve robustness against erroneous neural information. As

a neural coding model is used to implement efficiency, our

results suggest that spatio-temporally efficient coding could

generate both efficient and robust neural representations over a

hierarchical structure.

Spatio-temporally efficient coding minimizes temporal

differences between the present and future neural responses. It

thereby renders the temporal trajectories of neural responses

smooth. Smoothly changing external stimuli generate smooth

neural representations in the brain via spatio-temporally

efficient coding. This was also shown in the present study

using bar stimuli (Figures 3B, C) which are frequently

selected as experimental stimuli in studies on early visual

systems (Hubel and Wiesel, 1968; Williams et al., 2021;

Summers and Feller, 2022). It also produced correlated

activity between units, representing robustness to random

noise (Figures 3D, E).

Neural responses to moving bars in the brain hierarchy

transmit erroneous information to other hierarchies. On

the other hand, neural responses to static bars do not

have such erroneous information. Therefore, if the neural

responses to static bars and moving bars are similar, it

can be said that this neural coding is robust to erroneous

information by reducing the degree of the error. This

was shown through the distance between neural responses

(Figure 4) and the decoding of bar stimuli (Figure 5)

in our simulations, indicating that smooth coding via

spatio-temporally efficient coding reduces the impact of

erroneous information.

This robustness could be achieved because spatio-temporally

efficient coding is smooth coding that preserves structures of

the external world locally in the brain. When the external

world changes smoothly, smooth coding, which reflects the

smooth change in neural response, preserves the difference in

the appearance of the external world as a difference in neural

response. This was also confirmed in the simulations in the present

study; gradually increasing distances of off-diagonal entries around

diagonal entries indicate that neural responses locally preserve the

structure of the external world (Figure 4A). If the local structure

of the external world is preserved in the neural response and the

time difference between the present and the past is not very large,

a similar appearance of the external world will be reflected in the

similar neural response. These similar neural responses between

the present and the past will reduce the difference in information

represented in different hierarchies due to transmission delay. This

means that the impact of erroneous information is reduced.

Reducing the difference in information represented between

the present and the past also means that the difference in

information represented between the present and the future is

decreasing. This is consistent with the predictive information that

the biological visual system has information about future stimuli in

advance (Palmer et al., 2015; Chen et al., 2017; Sederberg et al., 2018;

Liu et al., 2021). It is known that a biologically plausible receptive

field can be obtained by using such future predictive coding (Singer

et al., 2018). The efficient coding principle for future prediction

through the information bottleneck framework was also presented

(Chalk et al., 2018).

It is known that sustained eye movements play an important

role in visual information processing to grasp detailed information

(Rucci and Poletti, 2015; Rucci and Victor, 2015). Since these eye

movements substantially alter visual input, rapid stabilization of

neural responses in the visual hierarchy is required to process

such continuously changing visual information. A recent study has

shown that the early visual system primarily responds to rapidly

changing visual input and that adjacent neurons exhibit similar

responses, indicating smooth neural representation (Schottdorf

and Lee, 2021). This is consistent with the smooth neural

representation in neural network models learned with STEC in the

present study.

Recent research has shown that correlations between the

responses of neurons in the visual system become stronger as the

hierarchy increases (Siegle et al., 2021). These correlated neural

responses were also predicted by a computational model learned

through the efficient coding of static images (Kong et al., 2018).

These results are consistent with the correlated neural responses

observed over the hierarchy in our model. Recent efficient

coding studies have revealed that efficient information transfer

is achieved even between hierarchical structures (Zhou et al.,

2022). The temporally smoothed neural responses implemented

in our model can reduce unnecessary fluctuations in information

transmission between hierarchical structures, thus enabling

efficient information transmission. Although our study is limited

to visual hierarchy, it would be plausible to extend STEC to

other brain hierarchies as a recent predictive coding model
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has demonstrated experimental results on the whole brain

hierarchy (Chao et al., 2018).

In the simulation of this study, neural representations for visual

bar stimuli were investigated. However, there is a possibility that

the same conclusion can be reached for other changing visual or

sensory stimuli. The first limitation of this study is the lack of

extensive investigation of neural representations for different kinds

of dynamic environments. The second limitation is that the low

decoding accuracy in the control condition (SEC) appears not only

in static (training set)–moving (test set) bar decoding but also

in static–static bar decoding and moving–moving bar decoding

(data was not shown). The low decoding performance under these

control conditions (SEC) was predicted in previous studies as

well (Sihn and Kim, 2022). For a more precise argument, it is

necessary to verify a control condition of static–static bar decoding

or moving–moving bar decoding. The third limitation is that the

model in the present study was insufficient to explain various visual

perceptual phenomena induced by dynamic visual stimuli. The

current hierarchical structure is too simple to elucidate various

visual perceptual phenomena, including motion perception in the

higher hierarchy. The motion information of the higher hierarchy

of the real brain can differentiate the neural representations of

the static bar and the moving bar (against Figures 4, 5). However,

since spatio-temporally efficient coding can be readily applied to

deeper hierarchy with little modification, it will be plausible to

extend spatio-temporally efficient coding to more complex visual

hierarchical structures and explore how the known properties of

visual perception emerge from neural responses.

5. Conclusion

While the efficient coding hypothesis that minimizes

redundancy has long been accepted, it is susceptible to brain

malfunctions such as noise. Balanced robustness and efficiency

of neural representations of external stimuli are observed in

biological neuronal activities and are presumably a key aspect of

neural coding. Efficient neural representations can be formed by

minimizing information redundancy among neurons and robust

neural representations can be formed by making neural responses

smooth. However, when these neural coding schemes are applied

to a hierarchical structure with bidirectional signal pathways in

the brain (e.g., visual hierarchy), they encounter a problem of

dealing with erroneous neural information due to transmission

delays across hierarchies. The problem emerges more clearly when

representing dynamic stimuli that change over time. The present

study aims to deal with this problem by using spatio-temporally

efficient coding (STEC), which can generate temporally smooth

neural representations of dynamic stimuli. Temporal smoothing,

in particular, enables smooth neural representations of dynamic

stimuli that change smoothly over time. Such temporally smooth

neural representations mitigate the problem of transmitting

erroneous neural information across hierarchies, resulting in

robust neural representations. The present study may help to

deepen our understanding of how neurons in a hierarchical

structure in the brain efficiently code the information of dynamic

stimuli by maintaining the robustness–efficiency balance.
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