
Received 14 May 2023, accepted 26 May 2023, date of publication 31 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281558

TS-Net: A Deep Learning Framework for
Automated Assessment of Longitudinal
Tumor Volume Changes in an Orthotopic
Breast Cancer Model Using MRI
YUNKYOUNG JUN1, SEOKHA JIN 1, NOEHYUN MYUNG 1, JIWOO JEONG1,
JIMIN LEE2,3, AND HYUNG JOON CHO 1
1Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
2Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
3Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan 44919,
Republic of Korea

Corresponding authors: Jimin Lee (jiminlee@unist.ac.kr) and Hyung Joon Cho (hjcho@unist.ac.kr)

This work was supported in part by the Korea Health Technology Research and Development Project through the Korea Health Industry
Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea, under Grant HI21C1161; in part by the
Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by the Ministry of Science and ICT (MSIT),
Republic of Korea, under Grant 2020-0-01336; in part by the Artificial Intelligence Graduate School Program (UNIST); and in part by the
National Research Foundation of Korea (NRF) funded by MSIT under Grant NRF-2021R1F1A1057818 and
Grant NRF-2022R1A2C201119112.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Animal Care and Use Committee (IACUC) of the Ulsan National Institute of Science and Technology.

ABSTRACT Monitoring tumor volume changes in response to therapeutic agents is a critical step in
preclinical drug development. Here, an automated magnetic resonance imaging (MRI)-based approach is
proposed using a deep learning framework for tracking longitudinal tumor volume changes in an orthotopic
breast cancer model treated with chemotherapy. Longitudinal magnetic resonance images are employed to
track changes in tumor volume over time, using an untreated group and a doxorubicin-treated group as
the dataset to evaluate treatment effects. Our approach, called Tumor Segmentation-Net (TS-Net), involves
replacing the encoder of U-Net with a pre-trained ResNet34 to improve performance. The model was trained
using a sample size of n=19 from the untreated group and then subsequently assessed on both the untreated
group (n=5) and treated group (n=6). The correlation between the tumor volume determined from the ground
truth and that obtained from the trained output was strong (R2

=0.984, slope=0.996). These results can lead
to automated three-dimensional visualization of different longitudinal volume changes with and without
treatment. Notably, for small tumors with volumes between 2 and 5 mm3, the proposed TS-Net demonstrated
an average Dice similarity coefficient score of 0.85, indicating the ability to reliably detect early tumors
that may often be missed. Our approach offers a promising tool for preclinical evaluation of tumor volume
changes and treatment efficacy in animal models.

INDEX TERMS Tumor segmentation, deep learning, longitudinal MR imaging, orthotopic breast cancer
model, therapeutic effect.

I. INTRODUCTION
Breast cancer, a prevalent and potentially fatal disease [1],
[2], highlights the importance of developing and optimizing
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chemotherapeutic agents. Preclinical studies play a crucial
role in the development of new drugs, allowing for the iden-
tification of agents with minimal side effects in humans [3].
By helping to ensure drug safety and efficacy before clinical
trials, preclinical studies expedite the drug development pro-
cess and potentially improve cancer treatment outcomes [4].
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FIGURE 1. Research process depicted in three main stages: (a) data acquisition, (b) TS-Net, and (c) evaluation. The trained TS-Net’s segmentation
outcomes are assessed using Dice and IoU metrics, and the results are depicted through tumor volume growth rate graphs, effect of doxorubicin (DOX)
graphs, and 3D volume renderings.

Therefore, orthotopic rodent models are commonly used to
simulate realistic tumor growth and metastasis patterns in
humans [5]. These models closely replicate primary human
tumors by transplanting tumor cells into the organ of origin
in rodents [6].

In orthotopic models, it is important to monitor tumor
progression longitudinally following treatment to support the
determination of the therapeutic effects of new agents [7].
Specifically, tumor volume reduction is directly related to
the response to therapy, making magnetic resonance imaging
(MRI) scans a valuable tool for repeatable and accurate mon-
itoring of tumor volume changes at multiple time points [8],
[9]. MRI-based approaches are especially useful for investi-
gating therapeutic effects on small tumors in rodent models,
which can be quantified using longitudinal analysis of tumor
volume changes. However, manual segmentation of conven-
tional MR images for orthotopic tumor models still requires
expert intervention [10]. Several studies have investigated the
sensitivity ofMRI in detecting small tumors, showing that the
detection of small tumors below 5–10 mm3 by MRI remains
challenging [11], [12].

In order to facilitate automated segmentation of tumors,
deep learning-based methods are currently being extensively
studied [13], [14]. Convolutional neural networks (CNNs)
have demonstrated exceptional performance in this regard,
with the U-Net architecture [15], a CNN variant, being
successfully applied to medical image segmentation [16].
U-Net++ [17] is an extension of U-Net that uses a nested
structure to improve feature extraction and introduces some
additional techniques such as deep supervision to improve
performance in semantic segmentation tasks. To address the
complexity of hyperparameter tuning, nnU-Net [18] has been
reported. This method is capable of automatically optimiz-
ing itself for a specific medical segmentation dataset with-
out requiring any manual hyperparameter tuning. Studies
have shown nnU-Net to be highly effective, setting a new

state-of-the-art on medical datasets [18], [19]. Another
promising architecture is ResNet [20], which has been
widely adopted and extended for various computer vision
tasks, including object detection and segmentation [21], [22].
Although the potential exists to utilize longitudinal medical
images to generate deep learning–based models, relatively
few studies have been conducted due to the unique char-
acteristics of medical images. As a result, applications of
these neural networks have remained limited, particularly
in tracking longitudinal therapeutic responses in orthotopic
rodent models, especially during the early stages of tumor
development.

The aim of this study is to optimize a deep learning-based
tumor segmentation framework, called TS-Net, for an ortho-
topic breast cancer model using longitudinal magnetic res-
onance (MR) images. The framework is designed to effec-
tively segment small tumors, track tumor growth, and mon-
itor the efficacy of therapeutic interventions. To achieve
these goals, a hypothesis was formulated that training a
deep learning model exclusively with MR images of an
untreated group would lead to a segmentation framework
that can demonstrate proficient performance with both
untreated and chemotherapy-treated groups. Such a frame-
work could enable comprehensive investigations targeting the
chemotherapeutic agent doxorubicin (DOX) in an orthotopic
breast cancermodel. Accordingly, longitudinalMR images of
an untreated group were utilized for the purpose of training
the deep learning model, after which the model performance
was evaluated for both untreated and DOX-treated groups.
Our results showed that the framework can automatically
evaluate three-dimensional (3D) tumor volumes at each time
point, enabling the identification of differences in tumor
growth rates between untreated and treated groups. This pro-
cess is depicted in Fig. 1. Our study provides a promising tool
for more accurate and efficient analysis of orthotopic breast
cancer models using longitudinal MR imaging.
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FIGURE 2. Architecture of the proposed TS-Net.

II. MATERIALS AND METHODS
A. PREPARATION OF CELLS
The MDA-MB-231 line (HTB-26; ATCC, VA, USA), a well-
established human triple-negative breast carcinoma cell
line commonly employed in anticancer research to eval-
uate chemosensitivity to DOX, was utilized to generate
the orthotopic breast cancer model. The cells were main-
tained in Dulbecco’s Modified Eagle Medium (DMEM; High
Glucose, Pyruvate; Gibco, Thermo Fisher Scientific, MA,
USA) supplemented with 10% fetal bovine serum (FBS-
22A; Capricorn Scientific, Ebsdorfergrund, Germany) and
1% penicillin-streptomycin (PS-B; Capricorn Scientific, Ebs-
dorfergrund, Germany) and incubated at 37◦Cunder 5%CO2.

B. ESTABLISHMENT OF THE ORTHOTOPIC BREAST
CANCER MODEL
MDA-MB-231 cells (5×106) were suspended in 50 µL of
phosphate-buffered saline (PBS, pH 7.4; Gibco, Thermo
Fisher Scientific, MA, USA) and mixed with 50 µL of
Matrigel (Cat No. 354234; Corning Inc., Corning, NY, USA)
in a 1:1 ratio [23]. The cell mixture was injected into
the inguinal right mammary fat pad of female CAnN.Cg-
Foxn1nu/Crl mice (6 weeks old; Orient Bio, Seongnam,
Republic of Korea) [24]. To monitor the growth of tumors,
their volumeswere estimated twice aweek bymeasuring their
length and width using a vernier caliper [25], [26].

C. DATA ACQUISITION
When tumor volumes reached 75 mm3 [27], the orthotopic
breast cancer model was divided into two groups, untreated
and treated, and the in vivo study (MRI imaging) was started.
At the same time, the treated group started to receive a weekly

intravenous injection of 0.1 mg/20 g DOX (HY-15142; Med-
ChemExpress, Monmouth Junction, NJ, USA) through the
tail vein. All experimental procedures were performed with
the approval of the Institutional Animal Care and Use Com-
mittee (IACUC) of the Ulsan National Institute of Science
and Technology.

To obtain a dataset for developing the deep learning
model, subjects from both untreated and treated groups were
scanned using a non-invasive 7T MRI scanner (Pharmascan
7T; Bruker BioSpin, Ettlingen, Germany) every 5 days for a
total of 30 days. All subjects from both groups were given
1–2% isoflurane anesthesia in a mixture of O2/N2O (3:7)
during the scanning process. T2-weighted axial images were
obtained using the rapid acquisition with relaxation enhance-
ment (RARE) pulse sequence, with the MR parameters echo
time (TE), repetition time (TR), RARE factor, matrix size,
field of view (FOV), slice thickness, and number of slices set
to 35 ms, 4000 ms, 4, 256 × 256, 35 × 35 mm2, 0.5 mm,
and 50, respectively [27]. Ground truth masks of the breast
tumor were generated through manual binary annotation by
two preclinical MRI researchers. From the 50 MR slices
obtained from the RARE pulse sequence per subject, only
those including tumors were included in the dataset.

D. NETWORK ARCHITECTURE
This study proposes an approach called TS-Net, which has
the U-Net architecture with a ResNet34 pre-trained on Ima-
geNet. ResNet34 is a deep neural network with 34 lay-
ers of residual blocks and identity mappings that provide a
more direct connection between the input and output com-
pared with the plain U-Net. Each residual block consists of
two 3 × 3 convolutional blocks, batch normalization (BN),
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TABLE 1. Details of the dataset used in this study. The training set
comprised 19 subjects from the untreated group. In order to perform
five-fold cross-validation, the train and validation sets were separated at
the subject level. The test set included 5 subjects from the untreated
group and 6 subjects from the DOX-treated group.

a rectified linear unit (ReLU), and an identity mapping
to effective address the vanishing gradient problem [28],
[29], [30], [31]. To optimize the TS-Net architecture, the
U-Net encoder is replaced with a pre-trained ResNet34,
which increases the number of feature maps from 64 to 512.
At the final layer of the network, a 1 × 1 convolution with
sigmoid activation is applied to generate the segmentation
map. Fig. 2 displays the architecture of TS-Net. The code
and dataset of TS-Net can be found via the following link:
https://github.com/ykj97/TS-Net.

E. TRAINING
Table 1 lists the details of the dataset used in this study. A total
of 1979 two-dimensional (2D) MR slices of the untreated
group (19 subjects) were utilized as the training set. Among
the 19 subjects in the untreated group, the train and validation
sets were divided at the subject level at an 80:20 ratio for
five-fold cross-validation. As the proportion of tumors in
individual slices of MR images is relatively low, the MRI
dataset of this work exhibited class imbalance. To address this
issue during the training of our deep learning segmentation
model, focal losswas implemented as the loss function, which
is specifically designed to deal with class imbalance [32],
[33]. The parameters of focal loss, namely α and γ , were set
to 0.75 and 2, respectively. The adaptive moment estimation
(ADAM) optimizer was also utilized to update the model
weights [34]. Additionally, the fixed learning rate was set to
0.0003, epoch to 500, and batch to 16. To prevent overfitting,
data augmentation was performed on the MR slices of the
training set during training to enhance the quality and size
of the data [35]. Data augmentation was randomly applied to
30% of the total training set using the methods of center crop
(240 × 240), resize (256 × 256), elastic transform, contrast-
limited adaptive histogram equalization (CLAHE), horizontal
flip, and vertical flip [36]. TS-Net takes 2D breast tumor
images (256 × 256) as input and produces a corresponding
2D segmentation map (256 × 256).

To verify TS-Net’s performance, various network archi-
tectures were utilized. U-Net was used as the baseline
model, and variations of U-Net, namely U-Net++, origi-
nal and pre-activation residual block, ResNet34, ResNet50,
and nnU-Net were applied to confirm competitive perfor-
mance. All networks were trained and evaluated using the

same dataset distribution and environment. Also, all networks
except nnU-Net were trained with the same hyperparameters.
The architecture was implemented using Pytorch [37] and
performed on a single GPU (NVIDIA GeForce RTX 3090).

F. EVALUATION
To evaluate the effectiveness of the trainedmodel, two assess-
ments were conducted. The first involved the untreated group
of 531 MR images that was not included in the training
process, and the second assessed the performance of the
trained model for the DOX-treated group of 579 MR images.
To evaluate model performance, soft voting was utilized with
the threshold of calculated average probability set to 0.4. The
mean and standard deviation (SD) of the Dice similarity coef-
ficient (Dice) and intersection over union (IoU) metrics were
calculated for each group. The Dice and IoU [38] metrics
were used as quantitative scores of segmentation performance
and expressed in terms of true positive (TP), false positive
(FP), and false negative (FN).

Dice =
2 × TP

2 × TP+ FP+ FN
(1)

IoU =
TP

TP+ FP+ FN
(2)

Based on the assessment process, a comparison of segmen-
tation performance using various network architectures was
performed by calculating Dice and IoU scores as well as by
measuring the number of parameters and inference times.

For a statistical comparison of the various networks, the
Mann–Whitney U test [39] was utilized. The null hypothesis
was that there is no difference between the distributions of the
two Dice scores from TS-Net and the others. The significance
level of the decision of a hypothesis test, namely alpha, was
set at 0.05.

G. VOLUME QUANTIFICATION AND VISUALIZATION
1) TUMOR VOLUME
Segmentation results of the trained TS-Net were used for
automated tumor volumetric measurements. The obtained
tumor volumes were utilized to monitor the tumor growth and
effectiveness of therapy at each time point, and additionally
to evaluate the performance of the trained TS-Net against
the ground truth. To calculate a tumor volume in a single
2D MR image, the total number of tumor voxels is counted
and multiplied by the unit volume of the voxel. In this study,
the unit volume of the voxel was 0.009 mm3. Even though
2D MR images were employed, the measured volume has
a unit of mm3 because of the slice thickness. For example,
to measure the volume of tumors distributed over 10 to 15
MR images on day 30, the tumor volumes of each MR image
were summed.

To observe the growth rate of the tumor volume in graph
form, the subject with the largest tumor volume was selected
from among the 5 subjects in the untreated group, and the sub-
ject with the smallest tumor volume was selected from among
the 6 subjects in the treated group. These were determined
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TABLE 2. Comparison of segmentation performance with P-values from Mann–Whitney U tests.

FIGURE 3. Visualization of the segmentation results. (a) A 3D tumor rendering of the ground truth (GT) in untreated and treated groups at day 30 is
shown on the left. Segmentation maps corresponding to the continuous slices of the 3D tumor rendering at regular intervals are shown on the right.
In the segmentation maps, the ground truth is outlined in red, and the TS-Net output is outlined in yellow. (b) Small tumor regions with ground truth
volumes (mm3) zoomed in to show the ground truth and corresponding segmentation map for untreated (left) and treated (right) groups.

from the total 3D tumor volume obtained on day 30. Then
the tumor volume was calculated for each time point (day 0,
day 5, day 10, day 15, day 20, day 25, and day 30) using both
the ground truth and the TS-Net results for monitoring the
growth rate.

Moreover, the effect of DOX at each time point can be
confirmed through this graph of tumor volume growth rate.
At this time, the mean tumor volume (V) was calculated from
all subjects in each group and then normalized using themean
tumor volume at day 0 (V0) to start at the same value. We also
measured the standard error of the two groups.

To verify the performance on small tumors from TS-Net
and nnU-Net per slice, a scatter plot and regression analysis

were utilized. Also, in order to investigate the sensitivity of
TS-Net in detecting small tumors, a box plot was used. Small
tumors (0 <tumor volume (mm3) ≤ 5) were divided into
each range, and the median, quartile, and whisker were also
calculated.

2) 3D VOLUME RENDERING
Visualization of the tumor shape and surface was achieved
using 3D volume rendering. This process involved stacking
continuous MR slices from each time point into a 3D image,
from which isosurface data was extracted and smoothed
10 times for an optimal visualization. The software tools used
for 3D volume rendering were Freesurfer (Massachusetts
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FIGURE 4. Results analysis. (a) Graph depicting the tumor volume growth rate of the largest tumor observed in the untreated group. (b) Graph
depicting the tumor volume growth rate of the smallest tumor observed in the treated group. (c) Plot of the effect of DOX. The lines represent the
mean normalized tumor volume with standard error. The ground truth (GT) results for the untreated and treated groups are shown in red and blue,
and the TS-Net output results are shown in green and pink. (d) Linear regression analysis of TS-Net illustrating the correlation between the tumor
volume of the ground truth and the output from TS-Net for the untreated (red) and treated (blue) groups (R2=0.984). The red and blue line represent
each group’s regression line, and the total regression line of both groups (black) has a slope of 0.996. (e) Linear regression analysis of nnU-Net
illustrating the correlation between the tumor volume of the ground truth and the output from nnU-Net for the untreated (red) and treated (blue)
groups (R2=0.982). The red and blue line represent each group’s regression line, and the total regression line of both groups (black) has a slope of
0.997. (f) Box plot of small tumors with a volume less than or equal to 5 mm3. The median value is represented by the red line.

General Hospital, MA, USA), Paraview (Sandia National
Labs, Kitware Inc., and Los Alamos National Labs, NY,
USA), and MATLAB (The MathWorks, Inc., MA, USA).

III. RESULTS
A. SEGMENTATION PERFORMANCE
Asmentioned in the previous section, different CNN architec-
tures were compared with TS-Net for breast tumor segmen-
tation. The mean and SD of Dice and IoU were calculated for
each group. The results are presented in Table 2. According
to the comparison results in Table 2, the performance of the
different networks was comparable in terms of Dice and IoU.
It was also observed that all networks showed a slightly better
performance with the treated group compared to the untreated
group. All networks had P-values from Mann–Whitney U
tests larger than 0.05 alpha and thus all networks had
similar Dice score distributions. To select trained models,
the criteria of a Dice score above 0.920 was set. Among
all networks, TS-Net and nnU-Net achieved a Dice score

above 0.920 without statistically significant performance dif-
ferences between them (P-value = 0.118). It should be noted
nnU-Net had a relatively slower inference time to predict
the test images, likely due to having the largest number of
parameters as shown in Table 2.

The segmentation outcomes from the trained TS-Net
are illustrated in Fig. 3. The results of the untreated and
DOX-treated groups are shown in the first and second rows of
Fig. 3a, respectively. The 3D tumor volume was constructed
from the continuous ground truth MR slices of day 30, and
five sections of the MR slices were chosen at a regular
interval. These five MR slices represent the top, middle, and
bottom sections of the tumors, and each is shown with the
corresponding ground truth (red contour) and segmentation
map (yellow contour) in order to illustrate the performance
consistency. To focus on small tumors, Fig. 3b shows MR
slices with small tumor volumes from the untreated group
(ground truth, 0.53 mm3) and the treated group (ground
truth, 2.58 mm3). The tumor regions are zoomed in showing
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FIGURE 5. 3D volume rendering results. (a) 3D-rendered tumor volumes for the untreated group, and (b) those for the treated group. Ground truth
visualizations are shown in the top panels, and TS-Net outputs are shown in the bottom panels.

the corresponding ground truth (red) and segmentation map
(yellow) for a clear visualization.

B. VOLUME QUANTIFICATION AND VISUALIZATION
1) TUMOR VOLUME
Fig. 4a and 4b plot the tumor volume growth rate of the
untreated and treated groups from TS-Net, respectively. The
x-axis denotes the seven time points, while the y-axis rep-
resents the corresponding tumor volume. These plots allow
us to observe the growth rate of the tumor volume for both
the ground truth and the TS-Net results. The tumor growth
rate curves gradually increased similarly in the ground truth
and TS-Net results of untreated and treated groups. Fig. 4c
displays the effect of DOX treatment. As shown in the figure,
the normalized mean tumor volume of the untreated group
increased rapidly compared to the DOX-treated group.

The tumor volumes were also calculated per 2D image
for linear regression analysis and displayed as a scatter plot
to compare the performance of TS-Net and nnU-Net in
Fig. 4d and 4e. In Fig. 4d, the untreated group (red) has
a correlation of 0.987 and a regression line slope of 0.974.
The DOX-treated group (blue) has a correlation of 0.981 and
a regression line slope of 1.015. As a result, analysis of
the two groups from TS-Net yielded a strong correlation
(R2

= 0.984) with a total regression line slope of 0.996.
In Fig. 4e, the untreated group (red) has a correlation
of 0.986 and a regression line slope of 0.971, while the
DOX-treated group (blue) has a correlation of 0.980 and a
regression line slope of 1.012. As a result, analysis of the two
groups from nnU-Net also yielded a strong correlation (R2

=

0.982) with a total regression line slope of 0.987. Comparing
the performance results in Fig. 4d and 4e, no significant
differences in the values of R2 or the slope of the regression
line were found, indicating a comparable performance of the
models. In Fig. 4f, the box plots represent the evaluation
results of small tumors (0 < tumor volume (mm3) ≤ 5).
The tumor volumes were divided into ranges to observe the
model performance in detail. TS-Net achieved a Dice score
of 0.85 for tumor volumes greater than 2 mm3.

2) 3D VOLUME RENDERING
The 3D volume rendering results for the untreated and treated
groups at each time point are shown in Fig. 5a and 5b,
respectively. The ground truth 3D rendering is displayed
in the top panels, and the generated TS-Net output is dis-
played in the bottom panels. As Fig. 5 shows, the tumor
volume gradually expands over time. In addition, the change
in tumor shape and surface can be observed by 3D volume
rendering. In this way, the performance of TS-Net can be
determined through such comparison. These results support
that the developed approach is proficient to segment and
visualize tumors, and thus by employing TS-Net, researchers
can monitor orthotopic breast cancer models over time with
a noninvasive method.

IV. DISCUSSION
In this study, a CNN-based approach, TS-Net, was proposed
for segmenting breast tumors in an orthotopic breast cancer
model using MR imaging. At the beginning of the research,
it was hypothesized that if TS-Net trained on longitudinal
MR images of an untreated group performed well on a DOX-
treated group, then the approach may have the potential for
wide utilization in orthotopic breast cancer model research.
To test this hypothesis, several networks were evaluated.
While U-Net with ResNet50, U-Net with original residual
block, and U-Net++ had Dice and IoU scores similar to
TS-Net, the models had larger numbers of parameters and
slower inference times. Therefore, the networks with a Dice
score above 0.920 were selected for comparison, a criteria
met by TS-Net and nnU-Net. Between them, nnU-Net had
higher but not statistically significant Dice and IoU scores (P-
value = 0.118). Moreover, linear regression analysis in terms
of R2 and slope from both models showed no meaningful
differences. Accordingly, the factors of inference time and
number of parameters can be considered as main aspects in
determining the proper network, which led us to TS-Net.

The use of a longitudinal MR dataset from an orthotopic
breast cancer model involving treatment for the purpose of
generating tumor segmentation is meaningful to the medical
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imaging field. Through MRI, a series of continuous images
were obtained that depicted different sections of tumors.
This indicates that our framework is generally effective for
segmenting entire tumors. These images also revealed the
presence of small tumors that have traditionally been chal-
lenging for experts to detect in single MR slices. Despite this
difficulty, our proposed approach was able to accurately seg-
ment even small tumors, with volumes more than 2 mm3, in a
single MR image. Taken together, the high evaluation scores,
longitudinal MR imaging, and ability to detect small tumors
for both groups suggest that TS-Net can be widely utilized
for orthotopic breast cancer research using doxorubicin.

V. CONCLUSION
In order to automatically track longitudinal tumor volume
changes in an orthotopic breast cancer model, a deep learning
framework, called TS-Net, was proposed. The framework
was developed using longitudinal MR images of an untreated
group and a DOX-treated group as the dataset, an approach
that has not previously been reported. Results showed that our
framework achieved high Dice scores, indicating its potential
for monitoring tumor growth rates over time and evaluating
the therapeutic effect of DOX. A strong correlation (R2

=

0.984, slope = 0.996) was also found between the tumor
volumes obtained from the ground truth and model output.
Additionally, the proposed framework could effectively seg-
ment small tumors (2 mm3) in a single MR image. These
results indicate that TS-Net could be a valuable tool for
researchers and be applied to the preclinical validation of drug
development using orthotopic breast tumor models.
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