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Introduction: Identifying biomarkers for depression from brain activity is important 
for the diagnosis and treatment of depression disorders. We investigated spatial 
correlations of the amplitude fluctuations of electroencephalography (EEG) 
oscillations as a potential biomarker of depression. The amplitude fluctuations 
of EEG oscillations intrinsically reveal both temporal and spatial correlations, 
indicating rapid and functional organization of the brain networks. Amid these 
correlations, long-range temporal correlations are reportedly impaired in patients 
with depression, exhibiting amplitude fluctuations closer to a random process. 
Based on this occurrence, we hypothesized that the spatial correlations of 
amplitude fluctuations would also be altered by depression.

Methods: In the present study, we extracted the amplitude fluctuations of EEG 
oscillations by filtering them through infraslow frequency band (0.05–0.1 Hz).

Results: We found that the amplitude fluctuations of theta oscillations during 
eye-closed rest depicted lower levels of spatial correlation in patients with major 
depressive disorder (MDD) compared to control individuals. This breakdown of 
spatial correlations was most prominent in the left fronto - temporal network, 
specifically in patients with current MDD rather than in those with past MDD. 
We also found that the amplitude fluctuations of alpha oscillations during eye-
open rest exhibited lower levels of spatial correlation in patients with past MDD 
compared to control individuals or patients with current MDD.

Discussion: Our results suggest that breakdown of long-range spatial correlations 
may offer a biomarker for the diagnosis of depression (current MDD), as well as 
the tracking of the recovery from depression (past MDD).
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1. Introduction

Finding biomarkers for depression from brain activity is important for the diagnosis of 
depression (1). Many biomarkers for depression using electroencephalogram (EEG) have been 
identified since several decades ago. A major biomarker for Major Depressive Disorder (MDD) 

OPEN ACCESS

EDITED BY

Weiwei Peng,  
Shenzhen University, China

REVIEWED BY

Fali Li,  
University of Electronic Science and 
Technology of China, China
Huibin Jia,  
Henan University, China

*CORRESPONDENCE

Sung-Phil Kim  
 spkim@unist.ac.kr  

Oh-Sang Kwon  
 oskwon@unist.ac.kr

RECEIVED 28 December 2022
ACCEPTED 05 April 2023
PUBLISHED 26 April 2023

CITATION

Sihn D, Kim JS, Kwon O-S and Kim S-P (2023) 
Breakdown of long-range spatial correlations 
of infraslow amplitude fluctuations of EEG 
oscillations in patients with current and past 
major depressive disorder.
Front. Psychiatry 14:1132996.
doi: 10.3389/fpsyt.2023.1132996

COPYRIGHT

© 2023 Sihn, Kim, Kwon and Kim. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 26 April 2023
DOI 10.3389/fpsyt.2023.1132996

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2023.1132996&domain=pdf&date_stamp=2023-04-26
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
mailto:spkim@unist.ac.kr
mailto:oskwon@unist.ac.kr
https://doi.org/10.3389/fpsyt.2023.1132996
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2023.1132996


Sihn et al. 10.3389/fpsyt.2023.1132996

Frontiers in Psychiatry 02 frontiersin.org

in the current field is frontal alpha asymmetry, in which the 
magnitudes of alpha oscillations in the left and right hemispheres are 
more asymmetrical in patients with depression than in healthy 
individuals (2–5). This biomarker is known to be effective not only for 
diagnosis but also for treatment: Neurofeedback training to self-
modulate the magnitudes of alpha oscillations in the left and right 
hemispheres to achieve better symmetry has been found to be effective 
in treating depression (6, 7), while not affecting mood in healthy 
participants (8). However, there has been inconsistencies in studies of 
frontal alpha asymmetry (5, 9); left prefrontal alpha activity was less 
than right prefrontal alpha activity in some studies, but could not 
be reproduced in other studies. Therefore, it is desirable to identify 
other EEG-based biomarkers that can be referenced to.

Here, we  investigated whether spatial correlations of amplitude 
fluctuations of EEG oscillations could be a novel biomarker for depression. 
Amplitude fluctuations refer to fluctuations in the envelope of relatively 
fast EEG oscillations (>1 Hz) (Figure 1, top). During rest, these amplitude 
fluctuations mainly display infraslow frequencies (<0.1 Hz) (10). In this 
infraslow frequency range, amplitude fluctuations over a wide range of 
brain areas are correlated with each other, establishing long-range spatial 
correlations of amplitude fluctuations (11–13).

Correlations of amplitude fluctuations during rest have also been 
observed over long periods of time, namely, long-range temporal 
correlations, which represent correlations between amplitude 
fluctuations in different time periods at the same brain region (10). 
The temporal correlations have often been shown to indicate rapid 
reorganization of the brain networks (10, 14). In patients with MDD, 
long-range temporal correlation of amplitude fluctuations during rest 
is reportedly disrupted (15). In general, changes in structural 
connectivity in the brain are likely to induce the disruption of long-
range temporal correlations (16), which suggests that MDD may alter 

structural connectivity (17). The disruption of long-range temporal 
correlations indicate that the amplitude fluctuations of EEG 
oscillations would become close to a random process. Accordingly, the 
spatial correlations of amplitude fluctuations over a wide range of 
brain regions, which indicate functional organization of the brain 
networks (11, 12), can also be  affected by changes in structural 
connectivity (18). In this study, we hypothesize that not only long-
range temporal correlation but also wide-range spatial correlation of 
amplitude fluctuations would be broken during rest in patients with 
MDD. The current study focused on the infraslow frequency band of 
EEG amplitude fluctuations. Our focus on the infraslow frequency 
band is motivated by previous findings that the infraslow frequency 
band of EEG amplitude fluctuations form the spatial correlation 
among brain regions in healthy subjects (11–13). As such, we aim to 
examine whether such spatial correlations would be  disrupted in 
patients with MDD. Similar breakdowns of spatial correlations can 
also occur in other frequency bands, but are beyond the scope of this 
study. On the one hand, it is unclear of which frequency band the 
amplitude fluctuations of EEG oscillations would exhibit this 
disruption. To address this, we  investigate spatial correlations of 
amplitude fluctuations over multiple frequency bands, including theta, 
alpha, and beta oscillations, which have been examined in the previous 
study on disruption of long-range temporal correlation in patients 
with MDD (15). We expected that if we could identify the breakdown 
of long-range spatial correlations, we might obtain additional evidence 
about changes in structural connectivity in patients with MDD. It has 
been reported that changes in structural connectivity can lead to the 
disruption of long-range temporal correlations (16). Therefore, our 
result showing the disruption of long-range temporal correlations 
would support that structural connectivity of patients with MDD may 
have changed (17). Also, spatial correlations of amplitude fluctuations, 
which represent the functional organization of brain networks (11, 
12), were altered in patients with MDD, indicating altered structural 
connectivity (18).

Classification of patients with MDD relative to healthy individuals 
using EEG has been well established using advanced machine learning 
algorithms (19–21). It reflects that automated diagnosis of MDD using 
EEG is highly plausible in clinical examinations (19, 20). On the other 
hand, it remains to be challenging to distinguish between patients with 
past MDD [individuals who are not currently suffering from MDD 
but have had a history of MDD in the past; (22)] and current MDD 
(patients currently suffering from MDD) based on depressive 
symptoms in the case that patients with past MDD still present with 
depressive symptoms. No study has addressed whether it is possible 
to distinguish between past and current MDD based on the analysis 
of EEG. Brain structure (23) as well as functional connectivity 
measured by EEG (24) have been found to remain altered in patients 
with past MDD. Therefore, we hypothesize that the way long-range 
spatial correlations of amplitude fluctuations are disrupted—in terms 
of brain regions and frequency bands—might be specific to each of the 
past and current MDD. One possibility is that disruption of spatial 
correlations in patients with past MDD occurs in the same frequency 
band of EEG oscillations and between the same brain regions as that 
in patients with current MDD, but the extent to which spatial 
correlations are disrupted is alleviated, being closer to healthy 
individuals. Another possibility is that progressive reorganization of 
structural and functional connectivity in patients with past MDD is 
manifested in spatial correlations of different EEG frequency bands 

FIGURE 1

Amplitude fluctuations of EEG oscillations. (Top) Theta oscillations 
(3–7 Hz) are shown in black. Amplitude fluctuations of the theta 
oscillations (= the envelope of the theta oscillations) are shown in 
purple. (Bottom) The top panel is the first 5 s from the bottom panel. 
Amplitude fluctuations with zero mean are shown in purple. Slow 
amplitude fluctuations are obtained by bandpass filtering of 
amplitude fluctuations at 0.1–1 Hz, shown in red. Infraslow amplitude 
fluctuations are obtained by bandpass filtering of amplitude 
fluctuations at 0.05–0.1 Hz, shown in blue.
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and brain regions from those in patients with current MDD. The 
present study examines these possibilities to find differences between 
past and current MDD in the disruption of long-range spatial 
correlations, which potentially would provide a new biomarker to 
track the progress of the recovery from MDD.

2. Materials and methods

2.1. Dataset

We used a dataset of 121 participants containing 
electrophysiological data and Beck depression inventory (BDI) scores 
(25). This dataset is publicly available at https://openneuro.org/
datasets/ds003478/versions/1.1.0. Participants performed the 
experimental task of opening and closing their eyes several times 
during rest. The average sum of lengths of the periods with eyes closed 
and opened were 91.82 ± 23.49 s and 93.68 ± 24.81 s, respectively. 
Electrophysiological data were collected while participants performed 
experimental tasks. The electrophysiological data contain 64-channel 
EEG (Synamps 2, Neuroscan, Australia) and 2-channel 
electrooculograms sampled at 500 Hz. The reference channel of EEG 
was located between the Cz and CPz channels. The average total 
length of the EEG recordings in each session across participants was 
326.07 ± 155.86 s. Recording sessions were held twice for 
each participant.

2.2. Classification of individuals with 
depression

Beck et al. (26) reported that a BDI score  (27) of less than 10 
could be classified as a healthy individual. Lasa et al. (28) reported that 
a BDI score of 13 or higher could be  classified as depression. 
We referred to these studies to classify 121 participants in the dataset 
used in this study. Because there was no participant with a BDI score 
between 7 and 10, we classified participants with a BDI score of 7 or 
less as the control group (Control, N = 75). Participants with a BDI 
score of 13 or higher were classified into the depressive symptoms 
group (Depressive, N = 46). 32 participants in the Depressive group 
underwent a clinical interview. Among the 32 participants, 11 
participants met the criteria of current major depressive disorder 
(cMDD, N = 11), 12 participants met the criteria of past major 
depressive disorder (pMDD, N = 12) and 9 participants did not meet 
the criteria of either (None, N = 9). Specifically, the cMDD group 
consists of patients currently suffering from major depressive disorder. 
The pMDD group consists of individuals who are not currently 
suffering from major depressive disorder but have had a history of 
major depressive disorder in the past. The None group consists of 
individuals who have depressive symptoms but have not suffered from 
major depressive disorder either in now or the past.

2.3. EEG signal processing

Artifacts were observed through visual inspection of the EEG, 
located at the beginning or end of the EEG recording. We removed 
these artifacts by eliminating the initial and final 10-s periods of the 

EEG recording. Independent component analysis (29) was performed 
to remove eye blink artifacts in the EEG.

We reduced the volume conduction effect using the surface 
Laplacian method before computing spatial correlations. 
We performed the surface Laplacian method on the EEG data by using 
the CSD toolbox (30–32). The parameters of the CSD toolbox were set 
to m = 4 and λ = 10–5, following the previous EEG oscillation study 
(33). Among the 64 EEG channels, 4 channels (CB1, CB2, M1, M2) 
not included in the standard montage were excluded from the analysis 
to use the CSD toolbox. Therefore, we  used 60 EEG channels 
for analysis.

In order to verify that true EEG signals were being collected, 
we performed frequency analysis using Fourier transform to examine 
whether the frequency components in EEG of the dataset used in this 
study were those typically observed in humans. We defined the typical 
frequency components according to the previous study (15), including 
theta, alpha, and beta oscillations. In a similar fashion to the previous 
study, the present study defined theta oscillations as 3–7 Hz, alpha 
oscillations as 8–12 Hz, and beta oscillations as 17–25 Hz. Then, 
we examined if the central frequencies of theta oscillation (i.e., 4–5 Hz) 
exhibited higher power than its peripheral frequencies (i.e., 3, 6–7 Hz), 
if the central frequencies of alpha oscillation (i.e., 9–11 Hz) exhibited 
higher power than its peripheral frequencies (i.e., 8, 12 Hz), and if the 
central frequencies of beta oscillations (i.e., 20–22 Hz) exhibited 
higher power than its peripheral frequencies (i.e., 17–19, 23–25 Hz), 
which has been regarded as typical frequency properties of human 
EEG. The frequency components were identified in terms of the 
magnitude of the Fourier transform of the EEG for each frequency. 
Fourier transform was performed using the fast Fourier transform 
function built in MATLAB.

Bandpass filtering was performed using a Hamming window-
based finite impulse response filter (built in MATLAB, the function 
fir1.m and filtfilt.m [filtfilt(fir1(7 * fix(“sampling rate” / “first cut-off 
frequency”), [“two cut-off frequencies”] * 2 / “sampling rate”), 1, 
“data”)], MATLAB R2021b) to extract theta (3–7 Hz), alpha (8–12 Hz), 
and beta (17–25 Hz) oscillations. To detect amplitude fluctuations, the 
amplitude envelopes of theta, alpha and beta oscillations were 
calculated using Hilbert transform. Hilbert transform was performed 
using MATLAB (34). The amplitude envelope was defined as the 
absolute value of the Hilbert transformed complex number.

In order to verify whether the frequency components of the 
amplitude fluctuations are prominently observed in the infraslow 
frequency band as indicated in the existing literature (10), Fourier 
transform was used to identify the frequency components of the 
amplitude fluctuations. The frequency components were identified in 
terms of the magnitude of the Fourier transformed amplitude 
fluctuations for each frequency.

Bandpass filtering was performed using a finite impulse response 
filter to obtain infraslow (0.05–0.1 Hz) and slow (0.1–1 Hz) 
fluctuations of the amplitude envelopes, that is, infraslow amplitude 
fluctuations and slow amplitude fluctuations, respectively (Figure 1, 
bottom). To detect the oscillation phase of the amplitude fluctuations, 
Hilbert transform was applied to the infraslow and slow amplitude 
fluctuations. Since bandpass filtering was performed in the infraslow 
frequency band, the infraslow amplitude fluctuations after filtering 
had zero-mean (Figure 1). The amplitude fluctuations in Bottom of 
Figure 1 were also zero-meaned to directly compare them with zero-
meaned infraslow amplitude fluctuations.
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2.4. EEG amplitude fluctuation analysis

2.4.1. Definition of spatial correlation between 
amplitude fluctuations

We estimated the spatial correlation between a pair of infraslow 
or slow amplitude fluctuations each from a different EEG channel, 
based on the oscillation phase difference measured at each time point. 
Rather than using Pearson’s linear correlation between the amplitude 
envelopes to measure the spatial correlation (11), the present study 
applied bandpass filtering (within infraslow or slow band) to the 
amplitude envelopes to extract oscillation phases. The difference 
between the oscillation phases at different spatial locations then 
represents the degree of spatial correlation [i.e., functional 
connectivity; (35, 36)], which can be measured at each time point. 
Spatial correlation can be measured as a correlation between two time 
series at two distinct locations (11). A high spatial correlation reflects 
that the amplitudes of the two signals increase or decrease together. 
For infraslow time series oscillating at the same frequency band, this 
high spatial correlation means that the oscillation phases of two 
bandpass filtered signals rise or fall together (37). Thus, the difference 
between the oscillation phases provides an estimate of instantaneous 
spatial correlation, useful for real-time processing. Note that we did 
not calculate a typical correlation measure for infraslow activity 
because we aimed to estimate instantaneous spatial correlation in real 
time, which can be  helpful for future development of clinical 
monitoring systems.

Spatial correlation based on an oscillation phase difference at time 
t , ψ t( ) , between two phases θ1 t( )  and θ2 t( )  (radian) is defined as:

 
ψ

π
θ θ π

t
t t
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−
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Note that θ θ1 2t t( ) − ( )  is symmetric with respect to θ1  and θ2 , 
and has the range of 0,π[ ] . If a phase difference is at the minimum, 
i.e., θ θ1 2 0t t( ) − ( ) = , ψ t( ) =1 . If a phase difference is at the 
maximum, i.e., θ θ π1 2t t( ) − ( ) = , ψ t( ) = 0 . If two oscillations are 
correlated with zero time lag, their phase difference would be small, 
making ψ t( ) large. Thus, ψ t( )  represents the degree of the spatial 
correlation. After calculating ψ t( )  at each t , we  calculated the 
median of ψ t( )  ( Mψ ) over the entire period of each task (i.e., eyes 
open and eyes closed):
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Mψ  was used as an estimate of a spatial correlation between a pair 
of EEG channels with a particular oscillation frequency (e.g., θ1  is a phase 
of theta oscillations in the F3 channel and θ2  is a phase of theta 
oscillations in the P4 channel during eyes closed) for each participant.

Using Mψ , we  first confirmed that the spatial correlation 
between infraslow amplitude fluctuations was larger than that between 
slow amplitude fluctuations, as shown in the previous study (10). 
We compared Mψ  of infraslow and slow amplitude fluctuations in 
the control group. The infraslow and slow mean Mψ s of every 
possible channel pair were estimated, for each combination of 
frequency band (i.e., theta, alpha, and beta) and task (i.e., eyes closed 
and open). In fact, previous studies have reported that spatial 

correlation appears mainly in the infraslow frequency band (11–13). 
Since we aimed to find how this reported spatial correlation changes, 
we were necessarily to focus on the infraslow amplitude fluctuations. 
In addition, we  conducted a confirmative analysis to verify that 
infraslow amplitude fluctuations were larger than slow amplitude 
fluctuations. Taken together the confirmative analysis result and the 
results from previous studies, we focused all the subsequent analyses 
on infraslow amplitude fluctuations.

2.4.2. Inter-regional exploration of spatial 
correlation breakdown

Next, to explore depression biomarker candidates, the disruption 
of spatial correlations in amplitude fluctuations of various frequency 
bands (theta, alpha, and beta) was investigated under the conditions 
with eyes-open and eyes-closed, respectively, where the disruption of 
spatial correlations was defined as significant decreases in Mψ  of the 
experimental groups compared to the control group. For each 
combination of frequency band and condition (e.g., theta band with 
eyes-open), we calculated the Mψ  for every possible channel pair in 
the region pair (8 regions, left frontal, right frontal, left temporal, right 
temporal, left parietal, right parietal, left occipital, and right occipital, 
which are commonly divided regions in the scalp EEG studies; 8C2 = 28 
region pairs in total) in every participant. Then, for each pair, 
we  statistically evaluated a decrease in Mψ  of each experimental 
group (three subgroups of the depressive symptom group: cMDD, 
pMDD, and None) compared to the control group. We counted the 
pairs showing significant decreases in Mψ  in the experimental group 
and sought for a combination of frequency band and condition that 
exhibited the highest pair count.

To that end, all EEG channels were divided into 8 regions: (1) left 
frontal region: FP1, AF3, F7, F5, F8, F1, FC5, FC3, and FC1; (2) right 
frontal region: FP2, AF4, F2, F4, F6, F8, FC2, FC4, and FC6; (3) left 
temporal region: FT7, T7, and TP7; (4) right temporal region: FT8, T8, 
and TP8; (5) left parietal region: CP5, CP3, CP1, P7, P5, P3, and P1; (6) 
right parietal region: CP2, CP4, CP6, P2, P4, P6, and P8; (7) left occipital 
temporal region: PO7, PO5, PO3, and O1; and (8) right occipital temporal 
region: PO4, PO6, PO8, and O2. Among all possible pairs of regions 
(8C2 = 28 pairs), we identified the one that showed the highest significance.

In sum, our proposed biomarker is the disruption of spatial 
correlations between EEG channels in two different brain regions 
(among 8 regions above), where the disruption of spatial correlations 
was determined by significant decreases in Mψ  of the infraslow 
amplitude fluctuation of EEG oscillations at a certain frequency band 
under a certain condition. Note that the evaluation of decreases in 
Mψ  relies on comparison with the spatial correlation data in a 
healthy control group. The specific brain regions, frequency band, and 
condition for the proposed biomarker identified in this study will 
be described in the following section. An overall procedure to find the 
proposed biomarker is illustrated in Figure 2.

2.5. Discrimination of individuals using 
spatial correlations

The proposed biomarker was explored based on comparison between 
the experimental and control groups. To assess the feasibility of using this 
biomarker to diagnose an individual for cMDD or pMDD, we developed 
a simple procedure that discriminated an individual as either cMDD or 
not. Specifically, we discriminated each participant into cMDD or the 
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other group (i.e., cMDD vs. pMDD, cMDD vs. None, and cMDD vs. 
Control) using Mψ  data of the most significant channel pair in the all 
inter-regional pairs identified above. First, we employed a leave-one-
subject-out scheme to assess our discrimination procedure using Mψ  
data. For each pair, we first calculated the median value of Mψ s over all 
subjects in each group, except for a test subject who was left out. Then, 
we determined which group the Mψ  value of the test subject was closer 
to the median value of. The chance level of discrimination was 0.5. It is 
noteworthy that we  designed a quite straightforward procedure to 
discriminate cMDD from other groups here, rather than employing more 
sophisticated classification algorithms, to evaluate a potential of the 
proposed biomarker to be directly used for diagnosis.

2.6. Statistical test

We did not assume a specific distribution of the population to 
perform statistical tests. Therefore, the one-tailed Wilcoxon rank-sum 

test was used for all comparisons, including the comparison between 
the infraslow and slow frequency bands in the control group, and the 
comparison between the control group and the experimental groups. 
To identify statistically significant channel pairs within each region 
pair, an FDR-corrected p-value of 0.05 was used.

3. Results

3.1. Frequency components of EEG and 
amplitude fluctuations during rest

In the frequency domain, the magnitude of EEG generally showed 
log–log linearity except for apparent peaks in the alpha (8–12 Hz) and 
beta (17–25 Hz) bands (See Figure 3A for representative examples). 
Although no clear peak was found in the theta band (3–7 Hz), 
we included it in our analysis based on previous studies (see Section 
2.4). The amplitude fluctuations of theta, alpha, and beta oscillations 

FIGURE 2

Procedure to explore a biomarker for current MDD using EEG spatial correlation. This illustrates all steps to identify the biomarker for current MDD as 
the breakdown of long-range spatial correlations. Specific EEG oscillation frequency band, task condition and brain regions, identified as a result of our 
investigation, are also illustrated in green.
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mainly consisted of infraslow (0.05–0.1 Hz) and slow (0.1–1 Hz) 
frequency components (Figure 3B).

3.2. Disruption of spatial correlation of 
amplitude fluctuations in patients with 
major depressive disorder

We first tested which of the infraslow amplitude fluctuations and 
slow amplitude fluctuations had higher spatial correlation ( Mψ ) 
across each channel pairs (60C2 = 1770). In the control group, 
1728/1770, 1763/1770, and 1749/1770 pairs were higher at the 
infraslow amplitude fluctuations than at the slow amplitude 
fluctuations in the theta, alpha, and beta oscillations in the eyes-closed 
conditions, respectively (rank-sum test, FDR-corrected p < 0.05). In 
the control group, 1393/1770, 1757/1770, and 1760/1770 pairs were 
higher at the infraslow amplitude fluctuations than at the slow 
amplitude fluctuations in the theta, alpha, and beta oscillations in the 
eyes-open conditions, respectively (rank-sum test, FDR-corrected 
p < 0.05). There was no significant channel pairs that the spatial 
correlation was higher at the slow amplitude fluctuations than at the 
infraslow amplitude fluctuations in all EEG oscillations in the all 
conditions (rank-sum test, FDR-corrected p < 0.05). In addition, 
previous studies also report that spatial correlation appears large in 
infraslow amplitude fluctuations (11–13). Therefore, we focused on 
the amplitude fluctuations at the infraslow frequency band. For slow 
amplitude fluctuations, see Supplementary material.

Next, we compared spatial correlations between the control group 
and each of the experimental groups in three oscillations in both eyes-
open and eyes-closed conditions. An example of the disruption of 
spatial correlation in patients with cMDD is shown in Figure 4. For the 
infraslow amplitude fluctuations in cMDD patients compared to that 
in the control group, there was prominent disruption of spatial 
correlation between eyes-closed participants’ theta oscillations in the 
left frontal – left temporal region (6/27 channel pairs, 22.22%, 
rank-sum test, FDR-corrected p < 0.05) (Figure 5). The most significant 
channel pair was FC1 - FT7 (rand-sum test, p = 0.0043). In pMDD 
patients relative to the control group, there was prominent disruption 
of spatial correlations between eyes-open participants’ alpha 
oscillations in the left occipital – right occipital region (13 / 16 channel 
pairs, 81.25%, rank-sum test, FDR-corrected p < 0.05) (Figure 6). The 
most significant channel pair was O1 – PO6 (rand-sum test, p = 0.0019). 
For slow amplitude fluctuations, see Supplementary Figures S1, S2.

3.3. Breakdown of long-range spatial 
correlation of theta oscillations of 
eyes-closed patients with current major 
depressive disorder

Since the most statistically significant disruption of spatial 
correlation occurred in the FC1 – FT7 channels between theta 
oscillations of eyes-closed patients for current MDD, we set this spatial 
correlation as the EEG biomarker of current MDD. The spatial 

FIGURE 3

Frequency components of EEG and amplitude fluctuations of EEG oscillations. (A) Frequency components of EEG during rest. (B) Frequency 
components of amplitude fluctuations according to three EEG oscillations at the Fz channel.
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correlation between the FC1 and FT7 channels was significantly lower 
in the cMDD group than in the pMDD group, the None group, or the 
control group (rank-sum test, p = 0.0031, 0.074, and 0.0043, 
respectively) (Figure 7).

3.4. Breakdown of long-range spatial 
correlation of alpha oscillations of 
eyes-open patients with past major 
depressive disorder

Since the most statistically significant breakdown of spatial 
correlation of past MDD patients occurred in the O1 – PO6 channels 
for alpha oscillations of eyes-closed patients for past MDD, we set this 
spatial correlation as the EEG biomarker of past MDD. The spatial 
correlation between O1 and PO6 channels was significantly lower in 
the pMDD group than those in the cMDD group, the None group, or 
the control group (rank-sum test, p = 0.13, 0.030, and 0.0019, 
respectively) (Figure 8).

3.5. Discrimination of individuals using 
biomarkers

The classification of an individual into the cMDD or other groups 
using spatial correlations of theta oscillations in the eyes-closed 
condition was evaluated. The accuracy (total classification accuracy), 
sensitivity (Proportion of individuals of the actual target group 
discriminated as the target group), and specificity (Proportion of 
individuals of the actual non-target group discriminated as the 
non-target group) rates were measured. When discriminating from 
control groups, cMDD groups had accuracy, sensitivity, and specificity 
rates of 67, 82, and 65%, respectively, while that for None groups were 
70, 73, and 67%. Discrimination between cMDD and pMDD groups 
had respective rates of 78, 82, and 75% (Figure 9A).

We also evaluate the discrimination of an individual into the 
pMDD or other groups using spatial correlations between alpha 
oscillations of eyes-open individuals. Discrimination between the 
pMDD and control groups had accuracy, sensitivity, and specificity 

rates of 74, 75, and 73%, respectively, while discriminating between 
pMDD and None groups had respective rates of 67, 67, and 67%. 
Discrimination between the pMDD and cMDD groups had rates of 
65, 75, and 55% (Figure 9B) with the same respectivity as above.

4. Discussion

Many studies have reported that the amplitude fluctuations of 
EEG oscillations are temporally as well as spatially correlated (10–13). 
In patients with depression, long-range temporal correlations are 
reportedly disrupted (15), indicating that the amplitude fluctuations 
become closer to random (38). In the present study, we hypothesized 
that if the amplitude fluctuations were close to a random process, 
spatial correlations of the amplitude fluctuations would also 
be  influenced. We  found that the spatial correlation between the 
amplitude fluctuations of theta oscillations during rest with eyes 
closed was decreased in individuals with depression. This disruption 
of spatial correlations was prominent in the left fronto – temporal 
network for theta oscillations during eye-closed rest, specifically in 
patients with current MDD (Figure 7). Hence, we propose that spatial 
correlations of the amplitude fluctuation of EEG theta oscillations 
between the left frontal and temporal regions can be  a potential 
biomarker for current MDD. Moreover, since the disruption of spatial 
correlations was prominent in the left occipital – right occipital 
network for alpha oscillations during eye-open rest, specifically in 
patients with past MDD, we propose that spatial correlations of the 
amplitude fluctuation of EEG alpha oscillations between the left 
occipital and right occipital regions can be a potential biomarker for 
past MDD.

Along with a previous report about the disruption of long-range 
temporal correlations (15), the present study demonstrated the 
disruption of the spatial correlation between theta oscillations. This 
finding indicates that the amplitude fluctuations of theta oscillations 
become spatiotemporally close to random in patients with depression. 
Even so, it is not clear yet whether these decreases in spatial and 
temporal correlations share the same cause.

Patients with current MDD and past MDD exhibit different 
patterns of spatial correlation disruptions: theta oscillations under the 

FIGURE 4

An example of the disruption of spatial correlation between amplitude fluctuations of theta oscillations in an eyes-closed patient with major depressive 
disorder. A graph is drawn only when the eyes are closed. Misaligned oscillation phases indicate the disruption of spatial correlation.
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eyes-closed condition (Figure 5) and alpha oscillations under the eyes-
open condition (Figure 8), respectively. This suggests that past MDD 
patients with depressive symptoms may not simply exist between 
patients with current MDD and healthy individuals. Since patients 
with current MDD and individuals with past MDD with depressive 
symptoms have different EEG biomarkers, this suggests that if 
recovering individuals have depressive symptoms, they may be in a 
completely different brain state from individuals who recover without 

residual depressive symptoms. These biomarkers may help to track the 
recovery from MDD, as we putatively visualize such tracking on the 
space composed of spatial correlations of theta and alpha oscillations 
described above in Figure 10.

The spatial correlation of EEG amplitude fluctuations evaluated in 
this study measures functional connectivity in the brain. Functional 
connectivity has been one of the key biomarkers of depression that are 
found in brain signals (39–41). In previous amplitude-based 

FIGURE 5

Differences of spatial correlation of infraslow amplitude fluctuations between current major depressive disorder and control groups. (A) The ratio 
(percentage) of channel pairs that the spatial correlation was significantly higher in cMDD than in control group (rank-sum test, FDR-corrected p < 0.05). 
(B) The ratio (percentage) of channel pairs that the spatial correlation was significantly lower in cMDD than in control group (rank-sum test, FDR-
corrected p < 0.05).
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functional connectivity studies based on rapid transition process (42) 
or coherence (43), alpha band connectivity was found to increase in 
patients with depression, which is contrary to our results. The 
functional connectivity methods used in those previous studies, 
however, do not focus on gradual changes in amplitude levels thus are 
different from our evaluation of spatial correlation between amplitude 
fluctuations. Another study using methods similar to ours, focusing 
on amplitude envelopes, showed an increase in theta band connectivity 

in patients with depression (18), which is also contrary to our results. 
However, we limited amplitude fluctuations to the infraslow frequency 
band where spatial correlations exist while the other study did not 
(11–13). Furthermore, functional connectivity is based on the 
amplitude envelope correlation in the other study, but our study 
focused on the phase difference of amplitude envelopes instead. It is 
noteworthy that functional connectivity using amplitude envelope 
correlations and phase differences have been shown to lead to different 

FIGURE 6

Differences of spatial correlation of infraslow amplitude fluctuations between past major depressive disorder and control groups. (A) The ratio 
(percentage) of channel pairs that the spatial correlation was significantly higher in pMDD than in control group (rank-sum test, FDR-corrected p < 0.05). 
(B) The ratio (percentage) of channel pairs that the spatial correlation was significantly lower in pMDD than in control group (rank-sum test, FDR-
corrected p < 0.05).
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results (44). In our study, we included patients with current as well as 
past MDD. In the case of these past MDD patients, it was reported that 
the functional connectivity in the beta band increases (24). In our 
results, however, the functional connectivity in the theta and alpha 
band in remitted depressed patients was decreased (Figure 8). The 
functional connectivity studies including the spatial correlation of 

amplitude fluctuations are vulnerable to EEG volume conduction (45, 
46). The effect of EEG volume conduction is considered to be weaker 
in proportion to the distance (45), and our results mainly drew on 
long-distance correlations. Therefore, it can be said that the effect of 
EEG volume conduction in the present study was relatively weak. 
However, since the effect of EEG volume conduction is not 
fundamentally eliminated, caution is needed in interpreting 
the results.

It has been suggested that the amplitude fluctuations of EEG 
oscillations are correlated with fluctuations in blood-oxygen-level-
dependent (BOLD) responses, as shown in a functional magnetic 
resonance imaging study (47). This may indicate that the spatial 
correlation of amplitude fluctuations of EEG oscillations could 
be related to the functional connectivity of BOLD responses between 
brain regions. From this perspective, a disruption of long-range spatial 
correlation in patients with depression may be  analog to an 
impairment of long-range functional connectivity of BOLD responses.

The disruption of long-range temporal correlation in relation to 
EEG oscillations has been reported to be observed not only in patients 
with depression but also in patients with other mental disorders such 
as early-stage Alzheimer disease (48) and schizophrenia (49). 
Therefore, there is a possibility that the disruption of spatial 
correlations may also appear in patients with other mental disorders 
apart from depression.

It is challenging to acquire low-frequency range of EEG because a 
DC-coupled or full-band EEG amplifier is generally required to 
extract infraslow activity directly from the recorded EEG signals. In 
contrast, the infraslow amplitude fluctuations investigated in this 
study are relatively easy to extract because they can be  obtained 
through the filtering and Hilbert transformation of the relatively fast 
oscillations of EEG (>1 Hz). Consequently, it does not require a 
DC-coupled EEG amplifier and can therefore be  examined 
more reliably.

This study was limited in that it only involved a restricted use of 
the infraslow frequency of amplitude fluctuations in relation to EEG 
oscillations. Due to the short data length, only 0.05–0.1 Hz could 
be used, excluding slower frequencies (e.g., 0.01–0.1 Hz). Since spatial 
correlation is stronger in the slower frequency domain (11–13), it is 
recommended that the disruption of spatial correlation at slower 
frequencies is investigated in future studies. A second limitation of the 
present study was the relatively small population size of the patients 
with depression, preventing a more rigorous validation of the results. 
One of the limitations of this study is relatively low accuracy of 
discriminating MDD (65–78%). Some EEG biomarker studies for 
MDD have reported accuracy data over 90% (19, 20, 41). A reason for 
the low accuracy obtained in our study would be  a high spatial 
similarity of the infraslow amplitude fluctuations between EEG 
channels (11–13); this can make discrimination of MDD by spatial 
correlations difficult. Another possible reason would be that we could 
use the information in a limited infraslow frequency band (0.05–
0.1 Hz) only, due to the limited length of the dataset. Accuracy may 
improve if we can use information from a wider frequency range (e.g., 
0.01–0.1 Hz).

We agree that relatively low discrimination accuracy using 
infraslow amplitude fluctuations may hinder using this biomarker 
alone for MDD diagnosis. However, discovering a new biomarker 
such as the breakdown of spatial correlations of infraslow amplitude 
fluctuations can be used simultaneously with several existing EEG 

FIGURE 7

Biomarker as the breakdown of inter-hemispheric long-range spatial 
correlation between left frontal and temporal region of patients with 
current major depressive disorder. The mean of spatial correlations 
( Mψ  in Eq. 2) between channels of left frontal and temporal 
regions. Each dot represents each participant. The three horizontal 
lines in the box indicate 25, 50, and 75% of the data, respectively. The 
result of statistical test that the spatial correlation of the left group 
was lower than the spatial correlation of the right group was 
displayed as a p-value (rank-sum test).

FIGURE 8

Biomarker as the disruption of inter-regional long-range spatial 
correlation between left occipital and right occipital region of 
patients with past major depressive disorder. The mean of spatial 
correlations ( Mψ

 
in Eq. 2) between channels of left occipital and 

right occipital regions. Each dot represents each participant. The 
three horizontal lines in the box indicate 25, 50, and 75% of the data, 
respectively. The result of statistical test that the spatial correlation in 
the pMDD group was lower than that in other groups was displayed 
as a p-value (rank-sum test).
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biomarkers to increase diagnosis accuracy. It has been reported that 
simultaneous use of multiple biomarkers can increase the accuracy of 
MDD diagnosis (19, 41). Hence, we believe that the addition of a new 
EEG biomarker can be  beneficial for the development of MDD 
diagnosis methods.

Many EEG biomarkers for diagnosing MDD have been proposed. 
These EEG biomarkers include the asymmetry of alpha oscillations, 
the spectral power of fast oscillations (>1 Hz), evoked potentials, EEG 
coherence between spatial regions, and phase synchronization, to 
name a few (see (1)). Although these biomarkers have been used in 
MDD research, it is useful to find a new biomarker to increase the 
accuracy of MDD diagnosis (19, 41). Long-range temporal correlation 
based on the amplitude envelope of EEG has been suggested as a 
biomarker (15), however it is not known whether the spatial 
correlations of infraslow amplitude envelopes can provide a new 
biomarker, which was dealt with in this study.

It is known that frontal alpha asymmetry, one of the biomarkers 
of depression, can help not only in the diagnosis but also in the 
treatment of depression. As noted, neurofeedback training for 
frontal alpha asymmetry has been found to be effective in treating 
depression (6, 7) while not affecting mood in healthy participants 
(8). Similar to frontal alpha asymmetry, long-range spatial 
correlation can be considered as an index of neurofeedback training 
whereby participants can receive neurofeedback to maintain high 
long-range spatial correlation. If such neurofeedback treatment is 
effective, long-range spatial correlation could become an effective 
biomarker not only in the diagnosis but also in the treatment 
of depression.

FIGURE 9

Discrimination of individuals by two kinds of biomarkers. (A) The normalized confusion matrix for the 2-classes discrimination (cMDD vs. pMDD, cMDD 
vs. None, and cMDD vs. Control) using spatial correlations ( Mψ  in Eq. 2). (B) The normalized confusion matrix for the 2-classes discrimination (pMDD 
vs. cMDD, pMDD vs. None, and pMDD vs. Control) using spatial correlations ( Mψ

 in Eq. 2).

FIGURE 10

Conceptual representation of different pathways recovering major 
depressive disorder through biomarkers. The y-axis is from Figure 7 
( Mψ

 in Eq. 2), indicating that the spatial correlation of theta 
oscillations of eyes-closed individuals. The x-axis is from Figure 8 
( Mψ  in Eq. 2), indicating that the spatial correlation of alpha 
oscillations of eyes-open individuals. The boundary lines of each box 
indicate 25 and 75% of data, respectively. The cross line of each box 
indicates 50% of data. The red arrow represents the recovery without 
residual depressive symptoms. The blue arrow represents the 
recovery with residual depressive symptoms.
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