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1. Introduction

The outbreak of harmful algal blooms (HABs) adversely affected 
water quality in rivers and lakes [1]. HABs have been frequently 
reported at global scale according to rapid urbanization and global 
climate change [2, 3]. The algae can release toxic substances, 
which typically lead to water quality degradation and health 
problems for humans and aquatic animals [4]. Since the con-
struction of a multi-functional dam and weir in major rivers 
of South Korea, the country has experienced cyanobacteria out-
breaks, which release microcystin, a toxic substance that neg-
atively affects the human body [5]. In particular, Daechung reser-
voir in South Korea has annually endured the outbreak of HABs 

due to the inflowing massive nutrient and warm water [6]. Hence, 
an accurate quantitative and qualitative analysis of HABs via mon-
itoring should be implemented to detect, monitor, and regulate 
severe algal blooms [7-9].

South Korea equips the algal alert system to monitor water quality 
for securing public health and drinking water. This monitoring system 
has weekly measured water quality related to HABs and notifies 
the government agency of the observation [10]. However, the weekly 
monitoring cannot identify the instant change of HABs because the 
dynamic of HABs has high variation and uncertainty [11]. In addition, 
persistent HABs monitoring is time consuming, costly, and labor 
intensive [12]. Recently, the internet of things (IoT) platform including 
detection sensors and wireless network has been proposed as a 
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ABSTRACT
Harmful algal blooms (HABs) have been frequently occurred with releasing toxic substances, which typically lead to water quality degradation 
and health problems for humans and aquatic animals. Hence, accurate quantitative analysis and prediction of HABs should be implemented 
to detect, monitor, and manage severe algal blooms. However, the traditional monitoring required sufficient expense and labor while numerical 
models were restricted in terms of their ability to simulate the algae dynamic. To address the challenging issue, this study evaluates the applicability 
of deep learning to simulate chlorophyll-a (Chl-a) and phycocyanin (PC) with the internet of things (IoT) system. Our research adopted LSTM 
models for simulating Chl-a and PC. Among LSTM models, the attention LSTM model achieved superior performance by showing 0.84 and 
2.35 (μg/L) of the correlation coefficient and root mean square error. Among preprocessing methods, the z-score method was selected as the 
optimal method to improve model performance. The attention mechanism highlighted the input data from July to October, indicating that 
this period was the most influential period to model output. Therefore, this study demonstrated that deep learning with IoT system has the 
potential to detect and quantify cyanobacteria, which can improve the eutrophication management schemes for freshwater reservoirs.
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promising monitoring technique, since it is capable of receiving 
the real-time data of water quality [13, 14]. Hu et al. [15] acquired 
water quality data through the real-time monitoring using the de-
tection sensors and the mobile online servers. They have collected 
real-time data such as water temperature, dissolved oxygen, salinity, 
and pH level. Although the real-time monitoring system can be 
useful to identify the deterioration of water quality, few studies 
have applied this technique to HABs monitoring.

Given the limited resources, understanding HABs via simulation 
could be useful to control the outbreak of algae [16]. The simulation 
of water quality through modeling regards important to determine 
the policy decisions for effective water resources management. 
Previous studies have developed numerical-based water quality 
models to understand the dynamics of algae, including the 
Environmental Fluid Dynamics Code (EFDC), Soil Water 
Assessment Tool (SWAT), and CE-QUAL-W2 [17-19]. However, 
these models were restricted in terms of their ability to simulate 
algal dynamics [5, 20, 21]. Additionally, these models have a chal-
lenging issue regarding the complexity of HAB dynamics depending 
on multiple physical, chemical, and biological system effects [10, 
22]. To address this challenge, the data-driven model has been 
introduced as an alternative approach to predict water quality and 
HABs by learning non-linear mathematical relations between input 
and output data [23]. Specifically, long Short-Term Memory (LSTM) 
has a considerable advantage in the time-series data [24]. Baek 
et al. [25] simulated the water level, total nitrate (TN), total phospho-
rus (TP), and total organic carbon (TOC) using LSTM. Zhang et 
al. [26] utilized the LSTM model to predict the water level in 
the urban drainage system. However, these models are limited 
to explain the correlation between input and output variables, and 
the observation [27, 28]. Data preprocessing also has an important 
role in machine learning and deep learning algorithms, and proper 
data preprocessing is compulsory for achieving better model per-
formance [29]. Shen et al. [30] demonstrated that it is necessary 
to use the preprocessing method for managing big data prior to 
the application of data-driven models.

Hence, we aim to evaluate the applicability of deep learning 
to simulate chlorophyll-a (Chl-a) and phycocyanin (PC) concen-
trations with real-time monitoring in Daechung reservoir, South 
Korea. Chl-a and PC are the proxy indicator of the algal biomass, 
Chl-a is an indicator of phytoplankton biomass and PC is an ac-
cessory pigment of cyanobacteria [31, 32]. Our research adopted 
state-of-the-art data-driven models, attention LSTM. the attention 
mechanism is the overcoming approach with explainability by 
analyzing the features of attention weight [33]. In this regard, the 
main objectives of our research were to: (1) conduct HABs monitor-
ing via IoT system, (2) simulate Chl-a and PC concentrations using 
LSTM models, (3) evaluate the model performance depending on 
the data preprocessing method, and (4) interpret the model result 
through attention weights of the model.

2. Material and Methods

2.1. Study Area and Data Acquisition

Daechung reservoir is located in upstream of Geum River, South 

Korea (N 36.35−36.52, E 127.48−127.60) (Fig. 1). This reservoir 
has supplied water to nearby cities (e.g. Daejeon and Chungju) 
for agricultural, domestic, and industrial use [34]. The water sur-
face area and storage capacity are 72.8 km2 and 1,490 × 106 
m3, respectively [35]. This site has the frequent occurrences of 
HAB from summer to late autumn [36]. The HABs by cyanobacteria 
have been annually reported during this season as regular events 
[37]. We measured Chl-a, PC, and seven water quality variables 
at two stations: Hoenam and Chusori. Hoenam is a transition 
zone that flows into the reservoir in the mainstream of the Geum 
River [38, 39]. Chusori has inflow from excessive anthropogenic 
sources including the sewage treatment water and fertilizers [40]. 
The monitoring was conducted from January to December in 2020. 
TN and TP were obtained by Ministry of Environment [41]. 
Meteorological data were acquired from near weather stations 
(e.g., Secheon (N 36.35-36.52, E 127.48-127.60) and 
Cheongnamdae (N 36.35-36.52, E 127.48-127.60)) [42]. Daily in-
flow and outflow of the reservoir were measured by the Water 
Resources Management Information System [43]. 

Fig. 1. Study area: Daechung reservoir with hydrological stations, mete- 
orological stations, and monitoring points. Green diamond, yellow 
square, and red circle indicate the hydrological station, the mete- 
orological station, and the monitoring point, respectively.

2.2. Internet of Things (IoT) Monitoring for Harmful Algal 
Blooms (HABs)

Fig. 2 describes the pontoon monitoring system consisting of a 
multi-parameter water quality instrument (EXO-2) and a remote 
terminal unit (RTU). EXO-2 (YSI Inc., Yellow Springs, Ohio, USA) 
can measure seven water quality variables: water temperature (WT) 
(℃), pH, electrical conductivity (EC) (mS/cm), dissolved oxygen 
(DO) (%), turbidity (Turb) (FNU), Chl-a (μg/L) and PC (μg/L) (Table 
S1). The water quality data are collected with RTU (Deongmoon 
ENT Co., ECO::WATCH RTU V3, Seoul, Korea) on the pontoon 
and transmitted to a data server through NB-IoT model [44, 45]. 
The RTU manages data collection schedule of EXO-2 and power-sup-
ply level of pontoon system. The NB-IoT module (SERCOM Co., 
TPB22-3) is used for low-power and long-distance wireless data 
communication. Real-time water quality monitoring using pontoon 
was conducted on the water surface. The water quality sensor 
of the pontoon was installed from 0.5 to 1.8 m.
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Fig. 2. Pontoon monitoring system in Daechung Reservoir. (a) pontoon 
monitoring system for measuring water quality variables; (b) pon- 
toon monitoring system in study site; (c) YSI-EXO-2 multi-parame- 
ter water quality instrument.

2.3. Chlorophyll-a and Phycocyanin Simulation Using Deep 
Learning

The deep learning for simulating Chl-a and PC consisted of four 
steps: (1) preparation of input data (Fig. 3(a)), (2) data preprocessing 
(Fig. 3(b)), (3) hyperparameters optimization (Fig. 3(c)), and (4) 
simulation of Chl-a and PC using deep learning (Fig. 3(d)). This 
study used seven water quality, two hydrological, and two meteoro-
logical as input data for simulating Chl-a and PC (Table S1). These 
hydrological and environmental data have verified the factors to 
influence algal growth [46]. Prior to application of deep learning, 
the input data applied three data preprocessing: min-max, z-score, 
and robust scaling methods. The min-max method rescales the 
data set with the range of zero to one using minimum and maximum 
values [47]. The z-score uses the mean and the standard deviation, 

Fig. 3. Schematic diagram for simulating Chl-a and PC concentration.

thereby the mean value calculates zero. The robust scaling removes 
the outlier in the dataset and calculates with interquartile range. 
In addition, this study optimized five hyperparameters using the 
bayesian optimization algorithm (Table S2). The hyperparameters 
can control the learning process and backpropagation [48, 49]. 
Finally, we simulated Chl-a and PC concentrations using three 
deep learning models: attention LSTM, one-layer LSTM, and 
two-layer LSTM. In our study, the dataset was randomly assigned 
to training and validation set from the observation. Previous studies 
have also used random sampling to divide the training and validation 
[50, 51]. Therefore, our dataset was divided into 70% of training 
and 30% of validation by random sampling. Our models have been 
trained using the adam optimizer to update the model weight and 
parameters to reduce loss value [52]. We used version 2.10 of 
Tensorflow API in the Python programming language to build up 
the deep neural network models [53]. Our model training was 
performed using an Intel® Core i9-10900F 2.80 GHz processor, 
the DDR4 64 Gigabytes of random-access memory, and NVIDIA 
GeForce RTX 3070 graphic card.

2.3.1. Data preprocessing 
The environmental variables have high variation with biased or 
skewed distribution, resulting in the biased model training [54]. 
These problems cause the presence of outliers, missing values, 
and non-normal distribution, which has led to a deviation between 
the input dataset [55, 56]. To solve this problem, this study applied 
three preprocessing methods: the min-max, z-score, and robust 
scaling methods. Previous studies demonstrated that the application 
of data preprocessing can guarantee the data quality before feeding 
into the deep learning model to minimize data variability [57]. 
The min-max linearly transforms original data using minimum 
and maximum values [58]. The min-max function is expressed 
as follows:

(1)

where Y(x) is the normalized value. xi is the data. The min(x) and 
max(x) are minimum and maximum of data. The technique provides 
the normalized value from zero to one. 

The z-score transforms the data using the mean and the standard 
deviation [47]. The z-score is expressed as follows [59]: 

(2)

where the mean(x) is the mean of the data and the standard devia-
tion(x) is the standard deviation of data [47]. 

The robust scaling could consider the presence of outlier using 
the interquartile range (IQR) that is the difference between the 
1st quartile and 3rd quartile, thereby minimizing the impact of outliers 
[60]. This equation is expressed as: 

(3)

where Q1 is the 1st quartile and Q3 is the 3rd quartile.
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2.3.2. Attention LSTM
Attention LSTM is the version of coupled LSTM and attention 
mechanism (Fig. 4 (a)). In the attention LSTM, the previous in-
formation are recurrent to deal with the sequence data by the 
LSTM layer (Fig. 4(b)). Additionally, this model was combined 
with the attention mechanism that is known to be used to enhance 
the model performance and interpretability (Fig. 4(c)) [61]. The 
attention mechanism decides the significant part of input data 
during the model training. In addition, this mechanism can ex-
plain the model result by generating the attention score map 
that can visualize the importance of input data [62]. Vaswani 
et al. [63] demonstrated that attention-based models had faster 
training time than existing recurrent and convolutional neural 
networks. The following equations are used to calculate the atten-
tion mechanism:

(4)

 (5)

(6)

where the   and t are alignment score, and the sequence length 
of input, respectively.  is a softmax function that turns an array 
of alignment scores to sum with one [64]. The parameters ve, We, 
and Ue are the weight matrices determined by the training process 
and the  indicates the number of input data. The  and   
are context vector and hidden state, respectively.

2.3.3. Long short-term memory (LSTM)
LSTM is developed based on recurrent neural network (RNN) 
[65]. The RNN is designed to deal with sequence data by interrelat-

ing between the previous state and the current state [66]. The 
RNN contains a recurrent loop, regulating information to be stored 
within the network. RNNs are weak to learn the long sequence 
due to the vanishing gradient problem in the deep neural network 
which means that previous data is not reflected in the current 
state [67]. The LSTM is proposed for resolving the vanishing 
gradient problem by applying gates in RNN cells. The LSTM 
architecture is composed of three gates namely forget, update, 
and output gate to regulate the interaction of the previous 
information. The LSTM can be calculated by the following equa-
tions: 

(7)

 (8) 

(9) 

(10)

 (11)

(12)

where ft is the forget gate, which determines what information 
should be forgotten or not. The previous hidden state and in-
formation from current input, x, pass through the sigmoid function, 
σ, which ranges from zero to one. The input gate, it, is the process 
of deciding whether to store current information using the sigmoid 
function. Tangent hyperbolic function, tanh, helps to regulate the 
network in the new memory cell, . Then, the current cell state, 

a b

Fig. 4. Descriptions of LSTM and attention LSTM; (a) attention LSTM, (b) LSTM mechanism, and (c) attention mechanism.
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, can be updated with the forget and input gate to contain in-
formation of current and previous state. ot denotes the activation 
vectors of the output gate to adjust the output activation of the 
cell. The W and b indicate weight and bias that can be calculated 
during the model training. The parameters h and c mean the hidden 
states and cell states [68]. 

2.3.4. Hyper-optimization (HPO)
The hyperparameters have strongly influenced the performance 
of data-driven models [48]. We obtained the optimal hyperparameter 
set using the bayesian optimization method [49, 69]. The bayesian 
optimization algorithm is derivative-free optimization to find the 
optimal hyperparameters with the gaussian process [70]. The hyper-
parameter is tuned to minimize the loss value within the configured 
range, thereby selecting the parameter to improve the performance 
of models [71]. In our study, Table S2 describes the hyperparameter 
range for HPO. The hyperparameters were automatically searched 
for the optimal value during bayesian optimization process. The 
mean square error (MSE) was adopted for calculating the loss be-
tween simulation and observation [72]. Also, we applied the dropout 
of 0.3 to prevent the overfitting problem [73]. Libraries of scikit-opti-
mize and Hyperopt were used for HPO [74]. 

2.4. Model Evaluation

The model performance was evaluated using the correlation co-
efficient (R) and root mean square error (RMSE). The R and RMSE 
can represent the indices for the relationship and error between 
the observation and the simulation [75]. These indices are obtained 
using the following equations: 

(13)

(14)

where pt is the simulated data, ot is the observed data,  is the 
mean of the simulated data, and n is the number of data. This 
study adopted the Taylor diagram to visualize the model perform-
ance, which can express the geometric relationship [76]. 

3. Result and Discussion

3.1. Real-time Monitoring for Algal Bloom

The boxplots of Chl-a and PC concentration are presented in Fig. 
S1. The mean concentrations of Chl-a and PC in Hoenam are 4.47 
μg/L and 0.07 μg/L, respectively, and those in Chusori were 9.51 
μg/L and 1.32 μg/L, respectively. The Chl-a and PC concentrations 
in Chusori increased from late summer to autumn, yielding 97.56 
μg/L and 31.37 μg/L of peak concentrations, respectively. These 
concentration levels can be regarded as the ‘very bad’ level according 
to ambient water quality standard in South Korea [77]. This was 
caused by high temperature and excessive nutrient loading by 
heavy rainfall [78, 79]. The water temperature in this study ranged 
from 23°C to 31°C when HABs occurred. This range of water temper-

ature can strongly affect the growth rate of algae, the vertical mixture 
of the freshwater, and the reduction of viscosity [80]. 
Pawlita-Posmyk et al. [81] referred that the warm water temperature 
between 15°C to 26°C can promote algal growth. The peak nutrient 
concentrations were observed in this bloom period; Hoenam showed 
TN and TP of 2.59 mg/L and 0.08 mg/L, respectively, and Chusori 
showed that of 4.06 mg/L and 0.20 mg/L. It implies that our study 
sites received excessive nutrients from the watershed, resulting 
in the outbreak of cyanobacteria bloom [82]. Paerl et al. [83] demon-
strated that the growth of cyanobacteria might have positive relation-
ship with nutrients because this species can use nitrogen and phos-
phorus to increase biomass.

3.2. Effect of Data Preprocessing

We compared the model performance using the Taylor diagram 
that can visualize the statistical summary between the observation 
and simulation (Fig. 5) [84]. Attention LSTM with the z-score 
showed the highest model performance by having the highest 
value of R and the lowest value of RMSE; the average values 
of R and RMSE were 0.84 and 2.35 (μg/L), respectively. It implies 
that the attention LSTM and z-score were suitable to simulate 
Chl-a and PC. Ding et al. [85] and Luong, Pham and Christopher 
[61] presented that the attention mechanism improved perform-
ance compared to the other models because this mechanism 
can be useful to capture the feature of input data. Zhang et 
al. [86] demonstrated that the z-score can stabilize the model 
training by reliving the negative effect of the outlier. In the con-
trast, the 2-layer LSTM and the min-max scaler were improper 
to simulate HABs, by showing the lowest performance. Especially, 
the model performance was decreased as increasing the number 
of layers. It indicates that the complex model might deteriorate 
the model accuracy than the simple model (i.e., 1-layer LSTM). 
Cho et al. [87] also showed that the model complexity negatively 
influenced the model inference, which imposed excessive compu-
tation power to identify the important features in data and 
parameters. Although min-max scaler was popular among pre-
processing methods, this method had limited to reduce the effect 
of outlier and the variation of data [58]. The model performance 
varied depending on the type of structure and preprocessing. 
It reveals that the selection of structure and preprocessing method 
were essential steps for effective model training and application. 
Chen et al. [88] suggested that the inappropriate selection of 
them might cause the vanishing gradient, thereby producing 
worse simulation. 

3.3. Hyper-parameter Optimization

Fig. S2 and S3 show the optimization process using the attention 
LSTM model with z-score scaling. The learning rate is the most 
sensitive hyperparameter in that the changed slope is the steepest 
compared to other parameters. During optimization, the learning 
rate was converged from the large value to the small value, implying 
that our model preferred the small step size when adjusting the 
weight and bias. Jang et al. [89] and Yun et al. [90] also recommended 
the smaller learning rate to simulate the water quality. In addition, 
the lookback also was the influential factor to the model result. 
The lookback can define the value how many previous timesteps 
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to simulate the output value [64]. In the contrast, the model perform-
ance was weakly influenced by the type of activation functions. 
Table S3 describes the optimized hyperparameter value from the 
optimization process. The optimal batch sizes for Hoenam and 
Chusori were eight. Previous studies showed that eight of batch 
size was enough to model training without the vanishing gradient 
and overfitting problems for the environmental simulation [91]. 
Our lookback optimal sizes were eight and seven for Hoenam and 
Chusori, indicating that the HAB simulation required the temporal 
information from the previous eight and seven days to the current 
simulation time, respectively. 

3.4. Chlorophyll a and Phycocyanin simulation

Fig. 6 and 7 present the time series and scatter plot of Chl-a and 
PC using attention LSTM with z-score scaling. The simulated Chl-a 
and PC concentrations were similar to the observation in both 
sites. On the Hoenam, the R and RMSE showed 0.92 and 1.63 
(μg/L) of Chl-a, and 0.77 and 1.66 (μg/L) of PC, respectively. On 
the Chusori, the R and RMSE showed 0.82 and 3.61 (μg/L) of 
Chl-a, and 0.83 and 2.48 (μg/L) of PC, respectively. These results 
implied the acceptable performance and good agreement with the 
observed Chl-a and PC. In particular, the Chl-a and PC simulation 
in spring and winter exhibited improved model accuracy compared 
to the summer season. This is because various external sources 
(e.g., heavy rainfall, nutrient loading, and warm water) existed 
that the algae life cycle in the summer season [80]. Park et al. 
[92] demonstrated that the algae life cycle was significantly influ-

enced by nutrients and discharge from the watershed. The simu-
lated Chl-a concentration showed higher variation than PC concen-
tration from July to October. This is because the concentrations 
of Chl-a were influenced by the dynamic of diatoms, green algae, 
and cyanobacteria while PC was an indicator for cyanobacteria 
that had rapid growth in summer [93]. The Chl-a and PC concen-
trations in Hoenam had relatively lower concentrations compared 
to Chusori because Hoenam presented had deep water above 25 
m compared to Chusori station, resulting in the shorter retention 
time [37]. Cha et al. [94] reported that a short retention time might 
restrict algal growth by accelerating the dispersion and advection 
of HABs.

3.5. Model Interpretability with Attentions

Fig. 8 shows the attention score map to temporally interpret the 
attention LSTM model. The plots represent the weight of input 
data to affect the model output [89]. On the attention score map, 
the color bar indicates the importance of the dataset [64]. The 
results were highlighted from June to October in Hoenam, indicating 
that this period was the most influenced period to the model result. 
In this period, there existed the intensive inflow including the 
nutrients and warm temperature. Jeong et al. [95] investigated that 
the HABs have occurred from August to October due to enough 
nutrients washed from heavy rainfall. Singh et al. [96] also demon-
strated that the effect of temperature from 20℃ to 30℃ can accelerate 
algal growth. The highlighted period presented the warm water 
having the range from 20℃ to 30℃, implying that the study sites 

a b

c d

Fig. 5. Taylor plots of the LSTM models including correlation coefficient, normalized standard deviation, and centered pattern RMSE. Red,
brown, pink, and blue color indicate observation, 1-layer LSTM, 2-layer LSTM, and attention LSTM, respectively, while square, circle,
and triangle shapes indicate min-max, z-score, and robust scaling method, respectively.
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were appropriate for growing the cyanobacteria. The weight scores 
of Chusori were highlighted in June. It implies that Chusori was 
vulnerable to the nutrients source by heavy rainfall compared to 
temperature because the peak nutrient inflow was observed in 
June [97]. The lookback from previous six day to the present could 

be regarded as important factors for simulating Chl-a and PC. The 
results were related to the initiation for algae developments at 
a suitable time and inoculum size [98]. Our study was limited 
to understanding the output by changing the specific input. Further 
studies would solve this problem by applying dual-stage attention 

Fig. 6. Comparison of simulated Chl-a and PC concentrations in Hoenam with observation.

Fig. 7. Comparison of simulated Chl-a and PC concentrations in Chusori with observation.
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mechanism that can explain the correlation between input and 
output by extracting the temporal feature of each input [62].

4. Conclusions

Herein, we implemented LSTM models to simulate the concen-
trations of Chl-a and PC using IoT monitoring. The real-time inves-
tigation of HABs was conducted and these data were then used 
for model training. Furthermore, we identified the effect of data 
preprocessing and structure type to model performance. This model 
was interpreted by analyzing the weight in the attention mechanism. 
The major findings of this study are as follows:

From the real-time monitoring results, the concentration of Chl-a 
and PC were peaked in late summer and autumn compared to 
the other periods.

Attention LSTM with the z-score method showed the highest 
model performance by having the highest value R and the lowest 
value of RMSE; average R and RMSE values are 0.84 and 2.35 
(μg/L), respectively.

The trained model exhibited that the monitoring data from July 
to October were highlighted by having the highest weight in the 
attention mechanism. This implies that this period is the most 
influenced period to model simulation.

In addressing the water quality problem due to HABs, this study 
found that the deep learning approach with IoT monitoring had 
significant potential to detect and quantify HABs with high 
accuracy. In addition, our approach could utilize alternatives to 
the traditional water quality modeling by dealing with HAB 
variation. Therefore, this study will provide the preliminary in-
formation for future deep learning approach in water quality 
determination. 
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