
74

Verifix: Verified Repair of Programming Assignments

UMAIR Z. AHMED and ZHIYU FAN, National University of Singapore

JOOYONG YI, Ulsan National Institute of Science and Technology, South Korea

OMAR I. AL-BATAINEH and ABHIK ROYCHOUDHURY, National University

of Singapore

Automated feedback generation for introductory programming assignments is useful for programming edu-

cation. Most works try to generate feedback to correct a student program by comparing its behavior with an

instructor’s reference program on selected tests. In this work, our aim is to generate verifiably correct pro-

gram repairs as student feedback. A student-submitted program is aligned and composed with a reference

solution in terms of control flow, and the variables of the two programs are automatically aligned via predi-

cates describing the relationship between the variables. When verification attempt for the obtained aligned

program fails, we turn a verification problem into a MaxSMT problem whose solution leads to a minimal

repair. We have conducted experiments on student assignments curated from a widely deployed intelligent

tutoring system. Our results show that generating verified repair without sacrificing the overall repair rate is

possible. In fact, our implementation, Verifix, is shown to outperform Clara, a state-of-the-art tool, in terms

of repair rate. This shows the promise of using verified repair to generate high confidence feedback in pro-

gramming pedagogy settings.

CCS Concepts: • Applied computing→ Computer-assisted instruction; • Software and its engineer-

ing→ Formal software verification; Software testing and debugging;

Additional Key Words and Phrases: Automated program repair, intelligent tutoring system

ACM Reference format:

Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury. 2022. Verifix: Ver-

ified Repair of Programming Assignments. ACM Trans. Softw. Eng. Methodol. 31, 4, Article 74 (July 2022),

31 pages.

https://doi.org/10.1145/3510418

1 INTRODUCTION

CS-1, the introductory programming course, is an undergraduate course offered by Universi-
ties and Massive Open Online Courses (MOOCs) across disciplines. Several programming

Umair Z. Ahmed and Zhiyu Fan contributed equally to this research.

This work was partially supported by a Singapore Ministry of Education (MoE) Tier 3 program “Automated Program

Repair.” This work was also partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2021R1A2C1009819, No. 2021R1A5A1021944) and the Institute for Information & Communications

Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-01001).

Authors’ addresses: U. Z. Ahmed, Z. Fan, O. I. Al-Bataineh, and A. Roychoudhury, School of Computing National Univer-

sity of Singapore COM1, 13 Computing Drive Singapore 117417 Republic of Singapore; emails: umair@nus.edu.sg, zhiyu-

fan@comp.nus.edu.sg, omerdep@yahoo.com, abhik@comp.nus.edu.sg; J. Yi (corresponding author), Department of Com-

puter Science and Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Ulsan 44919 South Korea;

email: jooyong@unist.ac.kr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/07-ART74 $15.00

https://doi.org/10.1145/3510418

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

https://orcid.org/0000-0002-7215-0855
https://orcid.org/0000-0002-7127-1137
https://doi.org/10.1145/3510418
mailto:permissions@acm.org
https://doi.org/10.1145/3510418

74:2 U. Z. Ahmed et al.

Table 1. Programming Assignment Repair Tools Comparison

Tool Completely Beyond Identical Verified Target Tool Dataset

Automated Reference CFG Repair Language Availability Availability

Clara [13] ✓ ✗ ✗ C, Python ✓ ✗

SarfGen [33] ✓ ✗ ✗ C# ✗ ✗

ITSP [34] ✓ ✓ ✗ C ✓ ✓

Refactory [16] ✓ ✓ ✗ Python ✓ ✓

CoderAssist [17] ✗ ✓ ✓ DP for C ✓ ✗

Verifix ✓ ✓ ✓ C ✓ ✓

Most existing APR tools are completely automated and rely on test-case evaluation (generate unverified repair).

assignments are typically attempted by the students as a part of this course, which are evaluated
and graded against pre-defined test cases. Given the importance of programming education and
the difficulty of providing relevant feedback for the massive number of students, there has been
increasing interest in automated program repair (APR) techniques for providing automated
feedback to student assignments [13, 16, 17, 30, 33, 34].

Existing approaches and their limitations. Table 1 provides a summary of state-of-the-art APR
works for introductory programming assignment and compares them with our approach Verifix.
The repair rate of the state-of-the-art techniques [13, 16, 33] is astonishingly high, around 90%.
However, different from general test-based APR technique, these works make certain assumptions
such as the presence of multiple reference programs and high-quality tests.

Many student assignment feedback generation approaches [13, 16, 33] assume the existence of a
complete set of high-quality test cases to validate their repairs. Over-fitting the repair to an incom-
plete specification is a well-known problem of test-based APR tools [11, 28, 35]. Prior studies have
shown that trivial repairs such as functionality deletion alone can achieve ~50% repair success rate
on buggy student programs given a weak oracle [6]. Generating complex incorrect feedback that
merely passes all tests can potentially confuse novice students more than expert programmers.
Indeed, a prior study [34] shows that novice students, when provided with incorrect/partial repair
feedback that merely passes more tests, have been shown to struggle more, as compared to ex-
pert programmers given the same feedback. Hence, we suggest that the feedback given to novice
students needs rigorous quality assurance, whenever possible.

In a related vein, some approaches, in particular recent ones [13, 33], assume the existence
of multiple reference programs. This assumption is made to overcome the difficulty of generating
feedback when the Control-Flow Graph (CFG) structure of the student program is different from
the instructor provided reference program.1 Using multiple reference programs can also diversify
the solution space, and thereby a feedback can be made more customized to a student solution [12].
However, the problem is that the existing approaches collect multiple reference programs manually
or based on testing (student submissions that pass all tests are considered correct) without formally
verifying their correctness. Automatic equivalence checking remains challenging despite recent
advances [7].

Insight. Many of the aforementioned problems of the existing APR techniques can be addressed
with a verified repair. We assume the presence of at least one reference solution, which is always
available in educational settings and can be given by an instructor. This setting is simpler than

1SarfGen [33] and Clara [13] require that the control-flow structure of student and reference programs should be exactly

the same. Clara also demands aligned variables to be evaluated into the same sequence of values at runtime.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:3

most existing approaches [13, 16, 33] requiring both multiple reference solutions and a test-suite.
We then create a verifiably correct repair of the student assignment. In other words, the repaired
student assignment will be semantically equivalent to the reference assignment given by the in-
structor. In terms of workflow, the repair engine indicates when it can generate a verified repair as
feedback, and when it does, the students can receive a feedback that is guaranteed to be correct. In
other words, we can have greater confidence or trust on the feedback generated by the repair tool.
Furthermore, student programs that are verified to be correct after repair can be used as additional
trustworthy reference programs in future.

Contribution: Verified repair. In this work, we propose a general approach to verified repair. Ver-
ified repair engenders greater trust in the output of the automatic repair tool, which has been
identified to be a key hindrance in deployment of automated program repair [29]. We show that
verified repair is feasible and achievable in a reasonable time scale (on average 29.5 seconds) for
student programming assignments of a large public university. This shows the promise of using
verified repair to generate high confidence live feedback in programming pedagogy settings.2 To
the best of our knowledge, ours is the first work to espouse verified repair for general purpose pro-
gramming education. The only previous attempt on verified repair [17] is tightly tied to a specific
structure of programs implementing dynamic programming.

Repair tool: Verifix. We build our verified-repair technique by extending the existing program
equivalence checking technique. Although automatically proving the equivalence between two
programs remains challenging (mainly due to the difficulty of automatically finding loop invari-
ants), we found that student programs are in many cases amenable for equivalence checking. This
is because there is usually a reference program whose structure is similar to the student program,
as shown in earlier works [13, 33]. Exploiting this, Verifix produces a verified repair. Note that
Verifix performs repair and equivalence checking at once. More concretely, Verifix aligns the in-
correct student program with the reference program into an aligned automaton, derives alignment
relation to relate the variable names of the two programs, and suggests repairs for the code cap-
tured by the edges of the aligned automaton via Maximum Satisfiability-Modulo-Theories

(MaxSMT) solving. We use MaxSMT to find a minimal repair. Our approach can generate a pro-
gram behaviorally equivalent to the reference program while preserving the original control-flow
of the student program as much as possible. This leads to smaller patches/feedback that we believe
are easier to comprehend, in general. We evaluate our approach on student programming submis-
sions curated from a widely used intelligent tutoring system. Our approach produces small-sized
verified patches as feedback, which, whenever available, can be used by struggling students with
high confidence. Our tool Verifix is available at https://github.com/zhiyufan/Verifix.

2 OVERVIEW

Consider a simple programming assignment for checking whether a given number n is a prime
number. Figure 1(a) shows a reference implementation prepared by an instructor, and Figure 1(b)
shows an incorrect program submitted by a student.

Limitations of the Existing Approaches. The state-of-the-art approaches such as Clara [13] and
Sarfgen [33] make the same-control-flow assumption described as follows:

To perform a repair, a given incorrect program and its reference implementation should have the

same control-flow structure.

2According to an earlier user study [34], students spend about 100 s on average to resolve semantic errors.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

https://github.com/zhiyufan/Verifix

74:4 U. Z. Ahmed et al.

Fig. 1. Motivating example for the Prime Number programming assignment. Existing tools such as Clara [13]

and Sarfgen [33] cannot repair the incorrect student program in Figure 1(b), since its Control-Flow Graph

(CFG) differs from the CFG of instructor designed reference program in Figure 1(a). Our tool Verifix generates

the repaired program in Figure 1(c), which is verifiably equivalent to the reference implementation, due to

superior Control-Flow Automata (CFA)-based abstraction.

Fig. 2. Control Flow Graph (CFG) of the reference and incorrect program listed in Figure 1. Incorrect program

CFG in Figure 2(b) differs from reference program CFG in Figure 2(a) due to a missing return node. Existing

tools such as Clara [13], Sarfgen [33] cannot repair the incorrect program.

Clara fails to repair the incorrect program shown in Figure 1(b) when the reference implemen-
tation shown in Figure 1(a) is used, reporting that the structures of these two programs do not
match. The CFGs of this incorrect program and its reference program are shown in Figure 2(b)
and Figure 2(a), respectively. Notice that in the reference CFG (Figure 2(a)), the LoopExit node has
one incoming edge, whereas in the student program’s CFG (Figure 2(b)) the matching LoopExit
node has two incoming edges where the additional edge of Figure 2(b) comes from “n′%i ′ == 0.”
The problem is that “n′%i ′ == 0” does not match “n % j ==0,” since the downward edge of node
“n % j ==0” does not reach LoopExit, unlike in “n′%i ′ == 0,” and hence the structures of the two
CFGs do not match. The fact that Clara treats a loop-free segment of the code as a single block
does not help. In Clara, two adjacent nodes, “n % j == 0” and “ret = 0” of Figure 2(a) are grouped
together, but the outgoing edge of this group still does not reach LoopExit.

A common approach that has been used to overcome this problem is to use multiple reference
programs of diverse control-flow structures [13, 17, 33]. Since it would be labor-intensive for an
instructor to prepare multiple reference implementations, recent works (e.g., References [13, 33])

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:5

Fig. 3. Control Flow Automata (CFA) of the reference and incorrect program listed in Figure 1. CFA AR of

reference program in Figure 3(a) is structurally aligned with CFA AS of student program in Figure 3(b) to

obtain an aligned CFA AF in Figure 3(c).

get around this problem by using student submissions. That is, student submissions that pass all
tests are added into a pool of reference implementations. However, this approach exposes students
to the risk of getting wrong feedback generated based on an incorrect program that happens to
pass all tests.

Our Approach. We show how we address the aforementioned limitations. Essentially, we do
not make the same control-flow-structure assumption. Instead, we conduct repair with Control

Flow Automata (CFA), where its nodes represent program locations and its edges represent
guarded actions. Figure 3 shows examples of CFAs, as will be described shortly in Section 2.1. Also,
we extend the existing equivalence checking technique into a verified repair technique. We tra-
verse each edge of the CFA obtained from a student submission and check its semantic equivalence
with the corresponding edge of the CFA obtained from a reference program. Note that each edge
represents a loop-free segment of a program. Equivalence checking is performed by encoding
the problem into an SMT (Satisfiability Modulo Theories) formula. If equivalence checking
fails, then we reformulate the equivalence checking problem into a repair problem; we allow
the expressions of the student submission to be replaced with the expressions of the reference
program (after converting variable names). The number of replacements is minimized by encoding
the repair problem into a MaxSMT (Maximum Satisfiability Modulo Theories) formula.

In the following, we show how our repair algorithm works through the following three phases:
the setup phase, the verification phase, and the repair phase. The last two steps occur simultane-
ously, as explained in the following:

2.1 Setup Phase

In the setup phase, we model the given reference and student programs as Control Flow Au-

tomata (CFA) with the nodes representing control-flow locations and the edges representing
guarded actions. Figures 3(a) and 3(b) show the CFA for the reference program (AR) and the CFA
for the student program (AS), respectively. Notice that each edge of a CFA is annotated with a
sequence of guarded actions. For example, in Figure 3(a), the edge between q1 and q2 is annotated
with “[n != 1] j = 2” where an assignment command j = 2 is guarded with the conditional expres-
sion n != 1. In the figure, we label this guarded action with “b.” As another example, the self-edge
of node q2 is annotated with a sequence of two guarded actions, c and d , which indicates that c and
d should be executed in sequence. As in the case of c , a guarded action can have only a conditional
expression φ, which means that the NOP command is guarded with φ.

To perform verification/repair in the next phase, we build an aligned CFA AF by aligning the
nodes and edges of AR and AS . Figure 3(c) shows the aligned CFA for our running example.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:6 U. Z. Ahmed et al.

Notation q1q
′
1 used in the entry node of Figure 3(c) denotes that node q1 ofAR and node q′1 ofAS

are aligned with each other. The other nodes ofAF are interpreted similarly. Meanwhile, notation
cd ; c ′d ′ used in the edge between q2q

′
2 and q2q

′
2 denotes that guarded-command-sequence cd of

AR is aligned with guarded-command-sequence c ′d ′ of AS . To align nodes and edges, we use
lightweight syntax-based approaches, as will be detailed in Section 4.1. Recall that the existing
approaches [13, 33] fail to handle our running example, due to their same-CFG assumption. We
relax this assumption by conducting node alignment and edge alignment separately. In our running
example, after aligning node q1 with q′1 and q4 with q′4, we conduct edge alignment for the edge
between q1 and q4 (annotated with guarded action a) by creating a fresh edge between q′1 and
q′4 (annotated with a′ in Figure 3(c)). Similarly, a new edge c ′e ′ is constructed between q′2 and q′4,
corresponding to the edge ce between q2 and q4, during the alignment stage, since no such edge
exists in the student automata. Conversely, the edge c ′h′ between q′2 and q′3 of the student’s CFA
is removed, because no matching edge exists in the reference automata. Our experimental results
show that this simple extension alone reduces the structural alignment mismatch rate by 13% (see
Table 4).

While in our example, only one aligned automaton can be constructed, there can be multiple
ways to alignAR andAS when multiple edges exist between two aligned nodes (Figure 5 shows
an example). In such a case, we construct all possible aligned CFAs, and in the next phase (verifi-
cation/repair phase), each aligned automaton is investigated to generate a minimal repair.

To conduct verification/repair, we also need to align variables used inAR andAS . To align vari-
ables, we use a syntax-based approach similar to Reference [33]. For each edge ofAF , we align vari-
ables whose usage patterns are similar to each other (see Section 4.2). For example, Verifix infers
the following variable alignment predicate for the edge q1q

′
1 → q2q

′
2: {ret ↔ ret ′,n ↔ n′, j ↔ i ′}

where ret is a special variable holding the return value of the function under verification/repair.

2.2 Verification Phase

We perform verification for all aligned automataAF . If verification succeeds forAF or its repaired
variation, then semantic equivalence between student and reference programs is guaranteed (see
Theorem 1). Verification is performed inductively for individual edge, starting from the outgoing
edges of the initial node of AF (a;a′ and b;b ′ for our Figure 3(c)). More specifically, we perform
verification by checking whether q ∼ q′ (i.e., q is bisimilar to q′) holds for each aligned nodes q
and q′ of AF .

Consider the edge q1q
′
1

b ;b′

−→ q2q
′
2. Given this edge, we should prove the following: when q1 ∼ q

′
1

is assumed, q2 ∼ q
′
2 holds after executing b;b ′. We achieve this by checking

φ1
edдe : ϕq1q′1

∧ψr ∧ψ
1
s ∧ ¬ϕq2q′2

,

where ϕq1q′1
and ϕq2q′2

denote the variable alignment predicates at node q1q
′
1 and q2q

′
2, respectively.

ϕq1q′1
: (ret0 = ret

′
0) ∧ (n0 = n

′
0) ∧ (j0 = i

′
0)

ϕq2q′2
: (ret1 = ret

′
1) ∧ (n1 = n

′
1) ∧ (j1 = i

′
1)

Meanwhile, ψr and ψ 1
s denote the guarded actions of b and b ′, respectively, in a Single Static

Assignment (SSA) form, where

ψr : (n0 � 1 =⇒ j1 = 2) ∧ (¬(n0 � 1) =⇒ j1 = j0)

ψ 1
s : (True =⇒ i ′1 = 1) ∧ (¬True =⇒ i ′1 = i

′
0).

If φ1
edдe

is satisfiable, then q2 ∼ q′2 does not hold, indicating verification failure. We check the

satisfiability of φ1
edдe

using an off-the-shelf SMT solver, Z3 [24].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:7

2.3 Repair Phase

For our running example, the SMT solver Z3 finds that φ1
edдe

is satisfiable under a certain assign-

ment ϕ1
ce , which is

ϕ1
ce : n0 = n

′
0 = 1, j0 = i

′
0 = 0,

where ϕ1
ce can be viewed as a counter-example to the edge verification. When ϕ1

ce holds, variable
j1 of the reference program has a value 0 (since ¬(n0 � 1) =⇒ j1 = j0) by ψr), whereas variable
i ′1 of the student program (aligned with j1) has a different value 1 (since True =⇒ i ′1 = 1 by

ψ 1
s), violating ϕq2q′2

. Using this counter-example, we perform a repair based on counter-example-
guided inductive synthesis or CEGIS strategy [31] (see Section 5.2). Following CEGIS strategy, we
look for a repair ofψ 1

s that rules out the counter-example ϕ1
ce . Verifix returns two potential repair

candidates:

ψ 2
s : (False =⇒ i ′1 = 1) ∧ (¬False =⇒ i ′1 = i

′
0),

ψ 3
s : (n′0 � 1 =⇒ i ′1 = 1) ∧ (¬(n′0 � 1) =⇒ i ′1 = i

′
0).

When ψ 2
s (or ψ 3

s) is substituted for ψ 1
s in φ1

edдe
∧ ϕ1

ce (notice that the original formula φ1
edдe

is

conjoined with ϕ1
ce), the modified formula is not satisfiable, indicating that under the context of

the counterexample (i.e., ϕ1
ce),ψ 2

s (orψ 3
s) is a repair. Notice how the original formulaψ 1

s is repaired.
In ψ 2

s and ψ 3
s , the original expression True is replaced with False and n′0 � 1, respectively. To

obtain n′0 � 1, we use the expression n0 � 1 appearing in ψr , the guarded action for the reference
program. This copy mechanism that exploits the existence of a reference program is a de facto
standard technique in recent works [13, 33].

So far, we only showed that ψ 2
s (or ψ 3

s) is a repair only in the context of ϕ1
ce . It is not known

yet whether ψ 2
s (or ψ 3

s) is a repair in a general context. To check this, we retry edge verification
for φ1

edдe
after replacing ψ 1

s with ψ 2
s (or ψ 3

s) in φ1
edдe

. In our example, verification attempt fails

again for both ψ 2
s and ψ 3

s (that is, the repaired φ1
edдe

is still satisfiable), and the following new

counter-example ϕ2
ce is obtained:

ϕ2
ce : n0 = n

′
0 = 2, i0 = i

′
0 = 0.

By considering both ϕ1
ce and ϕ2

ce , Verifix returns a new repair candidateψ 4
s ,

ψ 4
s : (n′0 � 1 =⇒ i ′1 = 2) ∧ (¬(n′0 � 1) =⇒ i ′1 = i

′
0).

As compared with ψ 1
s , two sub-expressions of ψ 1

s are repaired. As in ψ 3
s , True is replaced with

n′0 � 1. Also, i ′1 = 1 is replaced with i ′1 = 2 based on j1 = 2 appearing in ψr . This updated repair

candidate ψ 4
s rules out all counter-examples seen so far, and no further satisfying assignments

of φ1
edдe

are found. This completes the verification and repair, thereby repairing the edge b ′ in

Figure 3(b). The remaining edges are similarly verified/repaired, and Table 2 summarizes the buggy
student automata AS edges and their corresponding repairs generated by our repair tool Verifix.

We note that Verifix generates a minimal repair for each aligned edge under consideration. That
is, a generated edge repair modifies the minimum number of expressions required to repair the
edge (see Theorem 4). To obtain a minimal edge repair, we formulate a repair problem as a par-
tial MaxSMT problem, as described in Section 5.2. Essentially, Verifix tries to preserve as many
original expressions as possible by assigning a higher weight penalty to the original expressions
(hence, replacing an original expression increases the cost of repair). While combining minimal
edge repairs does not necessarily lead to a globally minimal repair, our experimental results sug-
gest that our greedy approach works well in practice. Verifix tends to generate smaller repairs than
a state-of-the-art tool Clara (see Section 7.4).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:8 U. Z. Ahmed et al.

Table 2. Incorrect Student Blocks and Their Corresponding

Repairs Generated by Verifix, after Multiple Rounds of Edge

Verification-repair of Figure 3 Aligned Automaton

Block Student Transition Repaired Transition

a′ ∅ [n′ == 1] ret ′ = 0

b ′ [True] i ′ = 1 [n′! = 1] i ′ = 2

c ′ [i ′ <= n′ − 1] [i ′ <= n′ − 1]

d ′ [n′%i ′! = 0] i ′ = i ′ + 1 [n′%i ′! = 0] i ′ = i ′ + 1

e ′ ∅ [n′%i ′ == 0] ret ′ = 0

f ′ [i ′ > n′ − 1] [i ′ > n′ − 1]

д′ [True] ret ′ = 1 [True] ret ′ = 1

h′ [n′%i ′ == 0] ∅

The blocks a′ and e′ are created in the automata, while the block h′

is removed.

3 PROGRAM MODEL

Prior to explaining our alignment and verification-repair procedures, we introduce the key struc-
tures used to model programs.

Abstract Syntax Tree (AST). An AST consists of a set of nodes representing the abstract pro-
gramming constructs, with the tree hierarchy, or edges, representing the relative ordering between
the appearance of these constructs. We extend the standard AST with special labels for two node
types: Func-Entry and Loop-Entry. Each AST consists of a root node corresponding to a function
definition, which is labelled as a function-entry node. Similarly, every loop construct in the AST
is labelled as a loop-entry node.

The AST for motivating example shown in Figure 1 consists of two labelled nodes: a Func-Entry

node q1 that maps to the check_prime function definition and a Loop-Entry node q2 that maps to
the for-loop construct. We note that some existing APR techniques for programming assignments,
like ITSP [34], which uses GenProg [19], operate on program ASTs directly.

Control Flow Graph (CFG). Existing state-of-the-art APR techniques such as Clara [13] and
SarfGen [33] operate at the level of CFG, whose nodes are basic blocks and edges denote control
transfer. We extend the standard CFG by introducing four types of special labelled nodes: {Func-

Entry, Loop-Entry, Func-Exit, and Loop-Exit}; denoting the program states when control enters
a function or a loop, and when control exits a function or a loop, respectively. The Func-Entry

and Loop-Entry CFG nodes correspond with control entering AST nodes of the same type. The
Func-Exit and Loop-Exit CFG nodes correspond with the program state after control visits the
last child of Func-Entry and Loop-Entry AST node, respectively. These Func-Exit and Loop-Exit

program states can also be reached by altering the control-flow using return and break statements,
respectively.

Figures 2(a) and (b) depict the CFG of the reference and student program in Figures 1(a) and
(b), respectively. These CFGs contain four special nodes denoting Func-Entry (q1/q

′
1), Loop-Entry

(q2/q
′
2), Loop-Exit (q3/q

′
3), and Func-Exit (q4/q

′
4) program states.

Control Flow Automaton (CFA). Our tool Verifix operates at the level of the CFA, often used
by model-checking and verification communities [15]. The CFA is essentially the CFG, with code
statements labeling the edges of CFA, instead of code statements labeling nodes as in CFG. The
nodes of our CFA are annotated with the node types mentioned earlier: Func-Entry, Loop-Entry,
Func-Exit, and Loop-Exit. The edges of our CFA are constructed by choosing all possible code tran-
sitions between the program states in CFG. Depending on the reason for control-flow transition,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:9

these edges can be of three types: normal, return, or break. Figures 3(a) and 3(b) depict the CFA
modeled using the reference and student CFG in Figures 2(a) and 2(b), respectively. We provide
our precise definition of CFA in the following:

Definition 1 (Control Flow Automaton). A Control Flow Automaton (CFA) is a tuple of the form
〈V ,E,v0,vt ,Ω,Ψ,Var 〉, where:

• V : is a finite set of vertices (or nodes) of the automata, representing function and loop
entry/exit program states,
• E ⊆ V × V is a finite set of edges of the automata representing normal, break, and return

transitions between program states,
• v0 : is the initial node representing function entry state,
• vt : is the terminal node representing function exit state,
• Ω : {u ↔ v | ∀u ∈ V ,∃v ∈ V }, for each function/loop entry node, maintains a mapping to

the corresponding exit node,
• Ψ is a mapping from edge e to ψe for all edges e , where ψe is the set of guarded actions

labeling e , and
• Var is the set of variables used in

⋃
e ψe .

For edge e in the CFA,ψe is thus the code statements labeling e . How we build a CFA is described
in Section 4.

4 ALIGNED AUTOMATA

Our methodology for repairing incorrect student programs relies on constructing an aligned au-
tomaton AF from the given student automaton AS and the reference automaton AR . The con-
struction of the automatonAF consists of following steps: (i) modeling the student and reference
programs as CFA AS and AR , (ii) the structural alignment of AS and AR , and (iii) the inference
of the variable alignment predicates.

4.1 Structurally Aligning AS and AR

To construct an aligned automaton AF , we first conduct node alignment between the nodes of
AS and AR . This step is followed by aligning the transition edges between AS and AR . A more
detailed description is provided below.

Node Alignment. Given two CFAs AS and AR , and their corresponding Abstract Syntax Trees
ASTS and ASTR for student and reference program, respectively, we construct node alignment
V : VS ↔ VR as follows:

(1) Delete all unlabelled nodes from ASTS and ASTR to obtain AST L
S and AST L

R , respectively. An

AST L consists of only Func-Entry and Loop-Entry labelled nodes.
(2) If the syntactic tree structures of AST L

S and AST L
R are identical with each other, then align

each node of AST L
S with AST L

R and add toV . This step aligns the Func-Entry and Loop-Entry

nodes of AS and AR .
(3) For each pair of entry nodes (either Func-Entry or Loop-Entry) that are aligned with each

other, their corresponding exit nodes (either Func-Exit or Loop-Exit) are aligned with each
other.

For constructing node alignment V , we first align the labelled nodes of student and reference
Abstract Syntax Tree (AST). The labelled AST nodes can be of two types: Func-Entry and Loop-

Entry. These labels are same as those inAS andAR , but we take advantage of the tree structure in
the AST. Figure 4 demonstrates unlabelled AST node deletion in step 1 through an example, after

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:10 U. Z. Ahmed et al.

Fig. 4. Example demonstrating Abstract Syntax Tree (AST) transformation to retain nodes labelled as func-

tion and loop entry.

which only the Func-Entry and Loop-Entry labelled nodes are retained. For the reference program
(respectively, student program) listed in Figure 1, the labelled AST L

R (respectively, AST L
S) consists

of two nodes q1 → q2 (respectively, q′1 → q′2). Since both the AST L trees are structurally the
same, the node alignment V consists of {q1q

′
1,q2q

′
2} after step 2 of node alignment, denoting the

Func-Entry and the Loop-Entry aligned nodes.
The step 3 of node-alignment finally aligns the function and loop exit nodes. Given the student

and reference automata in Figure 3, q4, which is the Func-Exit node corresponding to q1, is aligned
with q′4, which is the Func-Exit node corresponding to q′1. Similarly, the Loop-Exit nodes q3 and q′3
are aligned, since their corresponding Loop-Entry nodes q2 and q′2 were aligned in step 2.

The node alignment constructed thus, if successful, will lead to a bijective mapping from nodes
of AS to nodes of AR . Node alignment fails if the two programs have different function/looping
structure from each other. While limited, our approach can handle more diverse programs than
the state-of-the-art approaches [13, 33] that require not only bijective mapping between nodes but
also bijective mapping between edges. In these approaches, q4 and q′4 of Figure 3 cannot be aligned
with each other, since the edge q2 → q4 of AR does not have a corresponding edge in AS .

Edge Alignment. Given two CFAs AS and AR , and their corresponding node alignment V :
VS ↔ VR , we construct an aligned CFA AF by aligning the edges of AS and AR . Suppose that
uS ↔ uR (i.e., node uS in AS is aligned with uR in AR) and vS ↔ vR . For each edge of type
t ∈ {break, return,normal}, we treat the following four cases differently:

(1) AS has only one edge from uS to vS of type t , and AR has only one edge from uR to vR of
the same type t .

(2) OnlyAR has an edge from uR to vR of type t , whileAS has no edge from uS to vS of type t .
(3) OnlyAS has an edge from uS to vS of type t , whileAR has no edge from uR tovR of type t .
(4) None of the above matches, and AS (or AR) has multiple edges from uS to vS (or from uR

to vR) of type t .

In the first case, we simply align the matching edges. For example, in Figure 3,AR contains only
one normal edge b between q1 and q2 andAS contains only one normal edge b ′ between q′1 and q′2.
Hence, the aligned CFA AF has an edge b;b ′ as shown in Figure 3(c). An example of the second
case is shown with the two nodes, q1q

′
1 and q4q

′
4, ofAF . WhileAR has one edge a between q1 and

q4,AS has no edge between q′1 and q′4. In this case, we insert an edge a;a′ toAF where a′ has an
empty guarded action. The third case is the opposite of the second one. In this case, we remove
the edge between uS and vS , since there is no matching edge in the reference automata.

Last, in the fourth case, there exist several possible edge alignments of the order of
(M
N

)
× N !,

where M is the number of edges from uR → vR and N is the number of edges from uS → vS .
Figure 5 demonstrates this case through an example, resulting in two possible edge alignments.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:11

Fig. 5. Example demonstrating edge alignment. Given node alignmentV : {q1q
′
1,q2q

′
2}, the edges are aligned

based on type. The single break transitions c and c ′ are aligned with each other, while the multiple normal

edges are aligned combinatorially to produce two unique aligned automata.

The single break transitions c and c ′ are aligned with each other, while the remaining normal edges
(i.e., a, b, a′, and b ′) are aligned combinatorially to produce two unique aligned automata. When
multiple aligned automata can be constructed, we choose the edge alignment that maximizes the
number of verified-equivalent edges in the resultant aligned automatonAF . The formal structure
of aligned automaton is described in the following:

Definition 2 (Aligned Automaton). The automaton AF that results from aligning the automata
AS and AR is a tuple of the form 〈V ,E,v0,vt ,Ω,Ψ, Pred〉, where:

• V : VS ↔ VR is a finite set of one-to-one bijective mappings between the nodes of the
automata AS and AR ,
• E ⊆ V ×V is a finite set of edges representing normal, break, and return transitions between

the aligned nodes,
• v0 : v0

S
↔ v0

R
, where v0

S
and v0

R
are the initial function entry nodes of the automataAS and

AR , respectively,
• vt :vt

S
↔ vt

R
, wherevt

S
andvt

R
are the final function exit nodes of the automataAS andAR ,

respectively,
• Ω : {u ↔ v | ∀u ∈ V ,∃v ∈ V }, for each function/loop entry node, maintains a mapping to

the corresponding exit node,
• Ψ is a mapping from edge e to ψe for all edges e , where ψe = ψs ∪ψr , and ψs , ψr are the set

of guarded actions at the aligned edges es and er of the automata AS and AR , respectively,
and
• Pred : VarS ↔ VarR , denoting variable alignment, is a bijective mapping between variables

of AS and AR .

4.2 Inferring Variable Alignment Predicates

To infer alignment predicates of AF , we use a syntactic approach based on variable-usage pat-
terns similar to that of SarfGen [33]. Our approach for computing a mapping between two sets of
variables proceeds as follows:

For each edge ei in AF , we collect the usage set for each variable x/x ′ in the reference/student
program, namely, the sets usaдe(x , ei) and usaдe(x ′, ei). If the student automaton has fewer vari-
ables than reference automaton (|VarS | < |VarR |), then fresh variables are defined in VarS . The
goal is to find a variable alignment, a bijective mapping betweenVarR andVarS , which minimizes
the average distance between usaдe(x , ei) and usaдe(x ′, ei) for each i ∈ [1,n], where n is the num-
ber of edges in AF . This is done by constructing a distance matrixMei

for each edge ei of size
|VarR | × |VarS |, where

Mei
(x ,x ′) = Δ (usaдe(x , ei),usaдe(x

′, ei)).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:12 U. Z. Ahmed et al.

Using the matricesMe1 , . . . ,Men
, we construct a global distance matrixMд for the entire set

of edges in AF , where

Mд(x ,x
′) =

n∑
i=1

Mei
(x ,x ′)

n
.

We then choose to align the variable x in R to the variable x ′ in S , denoted as x ↔ x ′, if the
pair (x ,x ′) has the minimum average distance among all possible variable y aligned with x ′, that
is among all variable alignment pairs (y,x ′).

5 VERIFICATION AND REPAIR ALGORITHM

Once the aligned automatonAF is constructed, we can initiate the repair process of the incorrect
student program. Note that a repaired version of the incorrect student program produced by our
algorithm is guaranteed to be semantically equivalent to the given structurally matched reference
program. Our algorithm traverses the edges of the automaton AF to perform edge verification,
which basically checks the semantic equivalence between an edge of the student automaton and
its corresponding edge of the reference automaton.3 In case the edge verification fails, we per-
form edge repair after which edge verification succeeds. While the existing approaches [13, 33]
also similarly perform repair for aligned statements/expressions, the correctness of repair is not
guaranteed, unlike in our algorithm.

We combine the edge verification and repair into a single step by extending the well-known
SyGuS (syntax-guided synthesis) approach [3], which can be defined as follows:

Definition 3 (SyGuS). SyGuS consists of 〈φ,T , S〉 where φ represents a correctness specification
expressed assuming background theoryT and S represents the space of possible implementations
(S is typically defined through a grammar). The goal of SyGuS is to find out an implementation
that satisfies φ.

While in principle SyGuS can be directly used to perform repair, we have an additional non-
functional requirement not considered in SyGuS—that is, we want to preserve the student program
as much as possible for pedagogical purposes. To accommodate this additional requirement, we
introduce our approach, SyGuR (syntax-guided repair), formulated as follows:

Definition 4 (SyGuR). Syntax-guided Repair (SyGuR) consists of 〈φ,T , S, implo〉 where the first
three components are identical with those of SyGuS, and implo ∈ S represents the original imple-
mentation that should be repaired. The goal of SyGuR is to find out a repaired implementation
implr ∈ S that satisfies φ. In addition, differences between implo and implr should be minimal
under a certain minimality criterion.

We realize SyGuR in the context of automated feedback generation for student programs. In this
section, we present the two algorithmic steps we perform to conduct SyGuR: edge verification and
edge repair.

5.1 Edge Verification

In this section, we describe how we detect faulty expressions in the given incorrect student pro-
gram. Recall that the edges of the automaton AF are constructed by aligning the edges of the
student automaton AS with the edges of the reference automaton AR . Recall also that the edges
of AS can be faulty while the edges of AR are considered always as non-faulty.

3Our implementation performs a breadth-first search, while our algorithm is not restricted to a particular search strategy.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:13

Each edge e : u
ψs ;ψr
−→ v of AF between nodes u and v asserts the following property:

{ϕu }ψs ;ψr {ϕv }, (1)

where ϕu and ϕv are the variable alignment predicates at the source node u and target node v of
the edge e , respectively, and ψr and ψs represent a list of guarded actions of the reference imple-
mentation and student implementation, respectively, expressed in a Single Static Assignment

(SSA) form. For example, an original guarded action, if (x > 1) x++, is converted into its SSA form,
((x1 > 1) =⇒ x2 = x1 + 1) ∧ (¬(x1 > 1) =⇒ x2 = x1). Note thatψs andψr do not interfere with each
other, since the variables used in ψs and ψr are disjoint from each other. Also note that ψr and ψs

do not contain a loop (that is, a single edge does not form a loop), and thus an infinite loop does
not occur in the edge.

Edge verification succeeds if and only if property (1) holds. In SyGuR, property (1) expresses a
correctness specification φe for edge e . To check property (1), we use an SMT solver by checking
the satisfiability of the following formula:

φe = ϕu ∧ψs ∧ψr ∧ ¬ϕv . (2)

The satisfiability of φe indicates verification failure, or showing non-equivalence of two imple-
mentations along edge e . Conversely, the unsatisfiability of φe indicates verification success. Note
that there always exists a modelm that satisfies ϕu ∧ψr ∧ψs (this is because ϕu is not false, and the
SSA forms of ψr and ψs are defined over disjoint variables), and verification succeeds only when
for all such m, ¬ϕv does not hold. Intuitively, verification succeeds if and only if it is impossible
for the post-condition ϕv to be false after executingψr andψs under the pre-condition ϕu .

As for background theories in the SMT solver, we use: LIA (linear integer arithmetic) for
integer expressions, the theory of strings for modeling input/output stream, theory of uninter-
preted functions to deal with user-defined function calls such as check_prime, and LRA (linear

real arithmetic) to approximate floating-point expressions.

5.2 Edge Repair

Once φe is found to be satisfiable for an edge e (which indicates that the edge verification fails),
our goal is to repair edge e by modifying the student implementation encoded in ψs . Algorithm 1
shows our edge repair algorithm based on the CEGIS (counter-example-guided inductive synthesis)
strategy [31]. In step 1, edge verification is attempted, and verification failure results in a counter-
example ϕce that witnesses verification failure. In the remaining part of the algorithm, we modify
ψs to ψ ′s in a way that {ϕce }ψ

′
s ;ψr {ϕv } holds. If {ϕu }ψ

′
s ;ψr {ϕv } also happens to hold, then edge

repair is deemed as completed. Otherwise, an SMT solver generates a new counter-example ϕ ′ce ,
and our algorithm searches for ψ ′′s satisfying both {ϕce }ψ

′′
s ;ψr {ϕv } and {ϕ ′ce }ψ

′′
s ;ψr {ϕv }. This

process is repeated until either edge repair is successfully done or it fails. Edge repair can fail
either because the search space is exhausted or timeout occurs.

Let us first consider the case where ψs and ψr have the same number of guarded actions and
all guarded actions have the same number of assignments. To ensure this requirement is met, we
call function Extend (see line 20 of Algorithm 1), which will be described later. Under the current
assumption that ψs and ψr have the same number of guarded actions, Extend(ψs ,ψr) returns ψs ,
and thus, its return valueψ+s equalsψs .

To repair guarded actions ψ+s , we replace each of the conditional expressions and the update
expressions (RHS expressions) with a unique placeholder variable h. This makes an effect of mak-
ing holes in ψ+s , and filling in a hole for repair amounts to equating h with a repair expression.
Function RepairSketch of the algorithm performs this task of making holes in ψ+s and returns ψf

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:14 U. Z. Ahmed et al.

defined as ψ+s [e
(i) �→ h(i)]. In this definition, notation �→ denotes a substitution operator defined

over all expressions e(i) appearing inψ+s and their corresponding placeholder variables h(i). In the
following, we use “hole” to refer to a placeholder variable.

In SyGuR (see Definition 4), the expression space of the holes is defined by implementation
space S . Previous state-of-the-art works [13, 33] use the expressions of the reference program for
repair (generated repairs are not verified in these works, unlike in our approach), and we similarly
define the implementation space of each hole as follows:

Definition 5 (Implementation Space of a Hole). LetCs (Cr) andUs (Ur) be, respectively, the set of
conditional and update expressions of ψ+s (ψr). Recall that ψ+s (ψr) represents guarded actions of
the student (reference) program. When a conditional expression ec is replaced by a hole hc , the
implementation space of hc is defined asCs | C

′

r | true | f alse, whereC
′

r represents the set of con-
ditional expressions appearing in ψr with all variables of Cr replaced with their aligned variables
of the student program (see Section 4.2 for variable alignment). Similarly, given an assignment
x = hu where hu represents a hole for an update expression eu , the implementation space of hu is
defined as Us | U

′

r | x , where U
′

r represents the set of update expressions of ψr with all variables
of Ur replaced with their aligned variables of the student program. The inclusion of an lhs vari-
able x in the implementation space is to allow assignment deletion—replacing x = eu with x = x
simulates assignment deletion.

The repair synthesis process for some faulty expression on the edge es relies on four factors: the
discovered counter-examples, the set of suspicious expressions in ψ+s , the set of reference expres-
sions in ψr , and the inferred alignment predicates. These factors collectively determine the set of
expressions on the edge er that can be exploited to repair the buggy expressions on es .

Recall that given a list of counter-examples CE, we search for a repair ψ ′s that satisfies ∀ϕce ∈

CE : {ϕce }ψ
′
s ;ψr {ϕv }. When searching for a repair, we preserve the expressions of the student

program as much as possible for pedagogical reasons. We achieve this by conducting a search for
a repair using a pMaxSMT (Partial MaxSMT) solver. Note that an input to a pMaxSMT solver
consists of (1) hard constraints that must be satisfied and (2) soft constraints all of which may not
be satisfied. Whenever a soft constraintC is not satisfied, cost is increased by the weight associated
with C , and a pMaxSMT solver searches for a model that minimizes the overall cost. We pass the
following formula to a pMaxSMT solver where hard constraints are underlined:

∀ϕce ∈ CE :

(
ϕce ∧ψr ∧ψf ∧ ϕv∧

∧
(h(i),e (i),S�h(i)�)∈holes(ψf)

(
h(i) = e(i) ∧ h(i) ∈ S�h(i)�\{e(i)}

))
, (3)

where function holes(ψf) returns a set of (h(i), e(i), S�h(i)�) in which h(i) represents the placeholder

variable appearing inψf (recall thatψf is prepared by making holes inψs), e(i) denotes the original

expression ofh(i) extracted from student program, and S�h(i)� represents the implementation space

of h(i). Our soft constraints encode the property that each of the original expressions can be either
preserved or replaced with an alternative expression in the implementation space. To preserve
as many original expressions as possible, we assign a higher weight to h(i) = e(i) than h(i) ∈
S�h(i)�\{e(i)}.

The Extend function. Previously, we consider only the cases where ψs and ψr have the same
number of guarded actions and all guarded actions have the same number of assignments. To
ensure this requirement, we invoke the Extend function, which performs the following: First, if
ψs has a smaller number of guarded actions than ψr , then ψ+s (the return value of Extend) should

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:15

contain additional guarded actions, each of which uses the following template: [False] =⇒ x = x ,
where x is constrained to be the variables of the student program. Notice that these additional
guards are initially deactivated to preserve the original semantics of the student program, but
they can be activated whenever necessary during repair, since False is replaced with a hole by
RepairSktech. After this step, Extend finds the guarded action of ψr that has the maximum num-
ber of assignments. Given this maximum number M , we check whether all guarded actions of ψs

(including additional guarded actions with the False guard) also haveM assignments. Any guarded
action that has a smaller number of assignments than M is appended with additional assignments,
x = x where x is constrained to be the variables of the student program. This process makes sure
that for each guarded action, the student program can have as many assignments as the reference
program.

5.3 Properties Preserved by Verifix

Once all the edges of the aligned automatonAF are repaired and verified, it is straightforward to
produce a repaired student automaton A′S by copying repaired expressions from the automaton
AF to the automaton AS . In this section, we discuss several interesting properties of our repair
algorithm, namely, soundness, completeness, and minimality of generated repairs.

Theorem 1 (Soundness). For all program inputs, A′S and AR return the same program output.

Proof. Recall that for each repaired/verified edge u
ψs ;ψr
−→ v of a repaired automaton A′F ,

{ϕu }ψs ;ψr {ϕv } holds. By structural induction on the edges ofAF , the post-condition ofA′F ’s final
node holds true, and hence out = out ′ holds for the outputs aligned between AS and AR . Note
that for introductory programming assignments, output is clearly known (such as the return value
of the program), and we enforce the post-condition of A′F ’s final node to contain out = out ′. �

Our edge repair algorithm (Algorithm 1) always returns a repaired edge as long as the underlying
MaxSMT/pMaxSMT solver used in the algorithm is complete (that is, UNKNOWN is not returned).
This can be stated as follows, using the concept of relative completeness [9]:

Theorem 2 (Relative Completeness of Edge Repair). The completeness of Algorithm 1 is rel-

ative to the completeness of the MaxSMT/pMaxSMT solver.

Proof. Whenever edge verification fails, Algorithm 1 performs repair in step 4 of the algorithm.
In case a repair exists in the repair space, Algorithm 1 reaches line 36, and a pMaxSMT solver is
fed with Equation (3) to find out a repair. Thus, if the MaxSMT/pMaxSMT solver is complete, then
a repair is always generated. �

Meanwhile, the overall repair algorithm of Verifix is not complete. If AF is failed to be con-
structed, then the repair process cannot be started. Theorem 3 identifies the conditions under
which Verifix succeeds to generate a repair. In Theorem 3, we use the following definition of align-
ment consistency:

Definition 6 (Alignment Consistency). For each edge e ofAF {ϕu }ψs ;ψr {ϕv }, modifyψs into the

ψ ′s as follows: ψ ′s ≡ ψr [x
(i)
r �→ x (i)s] where x (i)r denotes all reference-program variables appearing

inψr and x (i)s denotes student-program variables aligned with x (i)r . Repeat this for all edges ofAF .
Then, we say that AF is alignment consistent when {ϕu }ψ

′
s ;ψr {ϕv } for all modified edges.

AF is alignment-consistent only when the variable alignment predicates are such that a given
student program can be verifiably repaired by edge-to-edge copy of the reference program (patch
minimality is not considered).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:16 U. Z. Ahmed et al.

ALGORITHM 1: Edge verification-repair

Input: Aligned edдe
Output: Verified/Repaired edдe

1: Let ϕu ≡ edge.sourceNode.invariants

2: Let ϕv ≡ edge.targetNode.invariants

3: Letψr ≡ edge.label.reference

4: Letψs ≡ edge.label.student

5: CEs ← [] // List of counter-examples

6: candidates ← [ψs]

7: repeat

8: // Step 1: attempt for edge verification

9: for eachψ i
s in candidates do

10: Let φi
edдe

≡ ¬(ϕu ∧ψr ∧ψ
i
s =⇒ ϕv)

11: if � |= φi
edдe

then // UNSAT

12: edдe .label .student ← ψ i
s // Update edge

13: return ✓ // Verifiably correct

14: else

15: ϕi
ce |= φi

edдe
// SAT

16: CEs ← CEs · ϕi
ce

17: end if

18: end for

19: // Step 2: make holes inψs

20: Letψ+s ≡ Extend(ψs ,ψr)

21: Letψf ≡ RepairSketch(ψ+s)
22: // Step 3: define implementation space

23: φhard ← []; φsof t ← []

24: for each ϕi
ce in CEs do

25: φhard ← φhard · (ϕ
i
ce ∧ψr ∧ψf ∧ ϕv)

26: end for

27: for each hole, expr ,weiдht in RepairSpace(ψf ,ψr ,ψs) do

28: φsof t ← φsof t · (hole = expr ,weiдht)
29: end for

30: // Step 4: search for a repair

31: if � |= (φhard ,φsof t) then // UNSAT or UNKNOWN

32: return ✗ // Repair Failure

33: else

34: // Update candidates using a pMaxSMT solver

35: // There can be multiple candidates

36: candidates |= (φhard ,φsof t)

37: end if

38: until timeout

Theorem 3 (Relative Completeness). Our repair algorithm succeeds to generate a repair, under

the following assumptions:

(1) AF is constructed,

(2) AF is alignment-consistent, and

(3) The MaxSMT/pMaxSMT solver used for repair/verification is complete.

Proof. Assume the three assumptions are met. Since Verifix traverses all edges of AF one-by-
one without backtracking, it suffices to show that each edge is repaired by Algorithm 1, which at

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:17

a high level consists of the following two parts: verification (step 1 of the algorithm) and repair
(step 2, 3, and 4).

First, consider the verification part. Verification is performed via a MaxSMT solver that returns
either (a) UNSAT (line 11) or (b) SAT (line 15) forφi

edдe
(see line 10). Note that the UNKNOWN case

is excluded by the third assumption. In case (a), edge verification is done. In case (b), the algorithm
moves to the repair part that we now consider.

In the repair part, a pMaxSMT solver is invoked at line 31 and 36 of Algorithm 1 and returns
either (i) UNSAT or (ii) SAT. The UNKNOWN case is excluded by the third assumption. Case (i)
happens only when the second assumption is violated (that is, a repair is not in the implemen-
tation space), and we exclude this case from consideration. In case (ii), repair candidates are ob-
tained (line 35), and verification is re-attempted to see if one of the obtained candidatesψ ′s satisfies
{ϕu }ψ

′
s ;ψr {ϕv }. The repetition between repair and verification is guaranteed to terminate, since

the implementation space is finite. This concludes the proof. �

Last, we consider the minimality of repair. In Verifix, use of MaxSMT guarantees the minimality
of edge repair.

Theorem 4 (Minimality of Edge Repair). Suppose that our algorithm repairs edge e : u → v
of AF by changing F ⊆ Cs ∪ Us (Cs and Us are defined in Definition 5). There does not exist F ′ s.t.

|F ′ | < |F | and the pre-/post-conditions of e are satisfied by replacing the expressions of F ′ with the

expressions in Cr ∪Ur .

Proof. Recall that we pass Equation (3) to a pMaxSMT solver. In the formula, the number place-
holder variablesh(i) defines the maximum size of edge repair, and a minimal edge repair is obtained
when the minimum number of placeholder variables h(i) are equated with expressions different
from their original expression e(i), which happens when expression h(i) = e(i) in Equation (3) is ig-
nored by the pMaxSMT solver. Since a pMaxSMT solver ignores the minimum number ofh(i) = e(i),
the stated theorem holds. �

Theorem 4 does not necessarily guarantee the global minimality of a generated repair. In the
following theorem, we identify the conditions that should be additionally satisfied to guarantee
global minimality:

Theorem 5 (Global Minimality). A repaired program generated by our algorithm is minimal if

the following conditions hold:

(1) Node alignment made inAF is optimal in the sense that there is no alternative node alignment

(other than the one generated by Verifix) that can lead to a smaller repair.

(2) The variable alignment predicates of AF are optimal in the sense that there is no alternative

variable alignment that can lead to a smaller repair.

Proof. Once node alignment and invariants of AF are fixed, repairing a student program
amounts to repairing each edge ofAF for which edge verification fails. Since each edge is repaired
minimally (Theorem 4), the stated theorem holds. �

Verifix currently does not guarantee the global minimality of repair. Node alignment and vari-
able alignment made by Verifix are not necessarily optimal. Instead of considering all possible
alignments, we use a heuristics-based approach for the sake of efficiency. Nonetheless, our exper-
imental results show that Verifix tends to find smaller repairs than Clara. Note that the existing
approaches designed to generate minimal repairs [13, 33] also do not consider node/edge align-
ment in the calculation of the minimality of a repair. Instead, a minimal repair is searched for only
after node/edge alignment is made. In fact, unlike those existing approaches that do not consider

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:18 U. Z. Ahmed et al.

alignment at all, we consider edge alignment by enumerating all possible edge alignments between
aligned nodes.

6 EXPERIMENTAL SETUP

6.1 Research Questions

We address the following research questions in this work:

(1) RQ1: How does Verifix perform in terms of the repair success rate, as compared to state-
of-the-art approaches? While Verifix generates verifiably correct repair, is the repairability
comparable to the existing approaches?

(2) RQ2: How does Verifix perform in terms of running time? Given that Verifix uses heavy-
weight SMT techniques to conduct verification, slowdown in running time as compared to
non-verification approaches is expected. How severely is the time performance affected?

(3) RQ3: What are the reasons for repair failure in Verifix? The answers to this question can be
used to identify where to improve in the future work.

(4) RQ4: Does Verifix generate small-sized repair? In a pedagogical setting, small repairs are usu-
ally desired. While Verifix generates a minimal edge repair, it does not guarantee to generate
a globally minimal repair. What is the practical consequence of this greedy approach?

(5) RQ5: What is the effect of test-suite quality on repair when a test-based approach is used?
We ask this question to compare the existing test-based approaches with Verifix, which does
not require a test.

(6) RQ6: How is the repair success rate of Verifix affected by the number of reference solutions?
We ask this question to assess the performance of Verifix when multiple reference imple-
mentations are available.

6.2 Dataset

Evaluation of a programming assignment feedback tool requires a dataset of incorrect student
assignments. For our dataset, we chose a publicly released dataset curated by ITSP4 [34] for eval-
uating feasibility of APR techniques on introductory programming assignments. This benchmark
consists of incorrect programming assignment submissions by 400+ first-year undergraduate stu-
dents crediting a CS-1: Introduction to C Programming course at a large public university. Other
datasets used in previous work are either not publicly available [13, 17, 33] or use different pro-
gramming languages than C [16].

We take students’ incorrect attempts from four basic weekly programming labs in ITSP bench-
mark, where each lab consists of several programming assignments that cover different program-
ming topics. For example, the lab in week 3 (Lab-3 in Table 3) consists of four programming assign-
ments that teach students about floating-point expressions, printf, and scanf. Table 3 lists the four
programming labs partitioned by different programming topics. Students had, on average, a time
limit of one-hour duration for completing each individual assignment. Our implementation cur-
rently does not support all programming language constructs such as pointers, multi-dimensional
arrays, and struct, which are necessary to support the remaining labs in the ITSP benchmark. Note
that support for more programming language constructs is orthogonal to our verified-repair gen-
eration algorithm. As more programming language constructs are supported, our repair algorithm
can be used without modification to repair more diverse programs, these are left as future work.

We use 341 compilable incorrect students’ submissions from 28 various unique programming
assignments as our subject. In addition to the incorrect student submissions, each programming

4https://github.com/jyi/ITSP#dataset-student-programs.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

https://github.com/jyi/ITSP#dataset-student-programs

Verifix: Verified Repair of Programming Assignments 74:19

assignment in the ITSP benchmark contains a single reference implementation and a set of test
cases designed by the course instructor. Both Verifix and baseline Clara [13] have access to the
reference implementation and test cases to repair the incorrect student programs.

Baseline comparison. We compare our tool Verifix’s performance against the publicly released
state-of-the-art repair tool Clara5 [13] on the common dataset of 341 incorrect student assignments.
A timeout of five minutes per incorrect student program was set for both Verifix and Clara to gen-
erate repair. We do not directly compare our results against CoderAssist [17] tool, since it does
not work with our dataset (CoderAssist targets dynamic programming assignments), while Refac-
tory [16] implementation targets Python programming assignments. About SarfGen, we could not
obtain access to the tool from its authors due to a copyright issue (SarfGen is commercialized). We
instead address these comparisons in our related work Section 10. Our tool Verifix6 is publicly
released to aid further research.

Our experiments were carried out on a machine with Intel® Xeon® E5-2660 v4 @ 2.00 GHz
processor and 64 GB of RAM.

6.3 Implementation

Verifix supports repairing compilable incorrect C programs, given a reference C program and op-
tional test cases. Verifix implementation is composed of three components: (1) Setup, (2) Verifica-
tion, and (3) Repair generation.

For the setup phase, we build on top of Clara5 [13] parser to convert incorrect and reference C
programs into a Control-Flow Graph (CFG) representation. We then convert the obtained CFGs
into its dual Control-Flow Automata (CFA), and align the reference CFA with incorrect CFA.

In the verification phase, the reference and student program labels on each aligned edge are con-
verted into a Single Static Assignment (SSA) format using our custom Verification Condition

Generator (VCGen) implementation. We make use of Z3 [24] SMT solver to verify if the aligned
edges are equivalent.

In the repair phase, we encode each repair candidate using Boolean selectors. Z3 pMaxSMT
solver is used to select the repair with minimal cost. The final repaired CFA/CFG internal repre-
sentation is converted back into a program using a custom concretization module (reverse VCGen).
After which, we make use of Zhang-Shasha7 tree-edit distance algorithm [37] to compute the patch
size between incorrect student program and the repaired student program.

7 EVALUATION

7.1 RQ1: Repair Success Rate

Table 3 compares the repair success rate of our tool Verifix against the state-of-the-art tool
Clara [13] on the common dataset of student submissions. Given a single reference implemen-
tation per assignment, Verifix achieves an overall repair success rate of 58.4% on the 348 incorrect
programs across 28 unique assignments. In comparison, the baseline tool Clara achieves a lower
overall repair success rate of 42.8% on the same assignments, a difference of more than 15%. Note
that the repairs generated by Verifix are verifiably equivalent to the reference implementation, in
addition to passing all the instructor provided test cases. That is, Verifix generates a verifiably cor-
rect feedback for 58.4% of student submissions in diverse assignments, which is not possible using
existing test-based approaches.

5https://github.com/iradicek/clara.
6https://github.com/zhiyufan/Verifix.
7https://github.com/timtadh/zhang-shasha.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

https://github.com/iradicek/clara
https://github.com/zhiyufan/Verifix
https://github.com/timtadh/zhang-shasha

74:20 U. Z. Ahmed et al.

Table 3. Lab-wise Repair Success Rate (Shown in the Repair Column) of Our Tool

Verifix and Clara [13]

Lab-ID Topics # Assign- # Prog- Repair (%) Avg. Time (sec)

ments rams Clara Verifix Clara Verifix

Lab-3 Floating point, printf, scanf 4 63 54.0% 92.1% 2.0 39.7

Lab-4 Conditionals, Simple Loops 8 117 71.8% 74.4% 32.9 34.2

Lab-5 Nested Loops, Procedures 8 82 22.0% 45.1% 10.2 12.5

Lab-6 Integer Arrays 8 79 12.7% 21.5% 14.2 8.1

Overall - 28 341 42.8% 58.4% 21.3 29.5

Time column represents the average runtime in seconds for all successfully repaired programs. The

number of assignments in each lab is shown in the #Assignments column, and the number of incorrect

student submissions in each lab is shown in the #Programs column.

The improvement in repair success rate of Verifix over Clara is partly due to the more flexible
structural alignment of Verifix than that of Clara. Recall that Verifix uses a more relaxed structural
alignment, as compared to the stricter structural alignment used by existing state-of-the-art ap-
proaches including Clara, as described in Section 4.1. Verifix requires the reference and incorrect
Control-Flow Automata (CFA) to have the same number of program states or nodes, denoting
functions and loops. While Clara additionally requires the reference and incorrect CFA to have the
same number of edges, denoting return/break/continue transitions. In Section 7.3, we investigate
the common reasons for repair failure.

7.2 RQ2: Running Time

The time column of Table 3 shows the average running time of Verifix and Clara, in seconds.
Verifix on average takes 29.5 s to successfully repair an incorrect program, as compared to
21.3 s on average by Clara. The running time of Verifix is particularly high in Lab-3 (39.7 s)
and Lab-4 (34.2 s), whereas in Lab-6, Verifix runs significantly faster than Clara (8.1 s vs. 14.2 s).
The high running time of Verifix in Lab-3 and Lab-4 seems due to the fact that Lab-3 and Lab-4
programming assignments involve non-linear arithmetic expressions. For example, one of the
Lab-4 assignments is on computing the distance between two co-ordinate points, which involves
square-root computation. Note that SMT solvers generally run slow when non-linear arithmetic
expressions are used in the input formula. There has been an effort to handle non-linear arithmetic
more efficiently [10], and Verifix can be benefited from the improvement of the SMT techniques.

We also note that while Clara runs faster than Verifix across the labs except for in Lab-6, its
repair success rate is always lower than that of Verifix across all labs. For example, in Lab-3, Clara’s
average running time is only 2.0 s, but its repair success rate is only 54.0%, which is 38.1% lower
than that of Verifix (92.1%). Overall, while Verifix, which uses heavy-weight SMT techniques, tends
to require more running time than Clara, the overall results are nuanced by the other facts such
as repair success rate and correctness guarantee.

7.3 RQ3: Reasons for Repair Failure

Table 4 shows the distribution of the repair failure reasons for Verifix and Clara. Structural Mis-

match (shown in the 4th column) is the primary reason for repair failure of Verifix and Clara,
accounting for 27.2% and 40.2% of all the 341 incorrect student programs, respectively. Recall that
a single reference solution is used for each assignment in the labs. For simpler programs such as
those in Lab-3 and Lab-4, both tools achieve low structural mismatch rate. That is, almost all the
incorrect student programs can be structurally aligned with the reference program. As the com-
plexity of the programs increases (in our dataset, as the lab ID increases, the students submissions

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:21

Table 4. The Distribution of the Four Reasons for Repair Failure, i.e., Structural Mismatch (4th Column),

Timeout (5th Column), Unsupported Language Constructs (6th Column), and SMT Issues (7th Column)

Lab-ID # Prog- Repair (%) Struct. Mismatch (%) Timeout (%) Unsupported (%) SMT issues (%)

rams Clara Verifix Clara Verifix Clara Verifix Clara Verifix Clara Verifix

Lab-3 63 54.0% 92.1% 0.0% 0.0% 42.9% 0% 3.2% 3.1% 0% 4.8%

Lab-4 117 71.8% 74.4% 7.7% 7.7% 19.6% 10.3% 0.9% 0.9% 0% 6.8%

Lab-5 82 22.0% 45.1% 75.6% 35.4% 1.2% 11.0% 1.2% 1.2% 0% 7.3%

Lab-6 79 12.7% 21.5% 83.5% 69.6% 2.5% 0% 1.3% 1.3% 0% 7.6%

Overall 341 42.8% 58.4% 40.2% 27.2% 15.5% 6.2% 1.5% 1.5% 0% 6.7%

The first three columns are copied from Table 3.

tend to be more complex), the structural mismatch rate tends to increase in both tools. However,
the rate increases more gently in Verifix than in Clara. For example, in Lab-5, while the structural
mismatch rate of Clara drastically increases to 75.6%, Verifix maintains a much lower mismatch
rate of 35.4%. This difference in structural match rate results in a overall higher repair success rate
in Verifix as compared to Clara. For example, 45.1% of Verifix vs. 22.0% of Clara for Lab-5. The high
structural mismatch rates in Lab-6 are related to the following: Many incorrect students’ programs
use function calls, but the reference programs often do not have functions with matching function
signatures.

The second biggest failure reason is Timeout (five minutes), accounting for 6.2% and 15.5% of
the dataset for Verifix and Clara, respectively. In Verifix, most of the running time is spent on
SMT and pMaxSMT solving by Z3 solver during verification and repair stage, respectively. In 1.5%
of student programs, repair failure occurs, since our current implementation does not support
all programming language constructs used in our datasets. For example, both Verifix and Clara
currently do not support the GOTO statement. Last, in 6.7% of the incorrect programs, Verifix fails
to generate a repair due to the incompleteness of SMT solving. Common cases of this kind are when
the SMT solver returns UNKNOWN result, instead of SAT or UNSAT, during the verification or
repair phase.

7.4 RQ4: Minimal Repair

To investigate this research question, we compare the sizes of repairs generated from Verifix and
our baseline state-of-the-art tool Clara [13]. Since the size of the student programs vary signif-
icantly, we normalize patch size with the size of original incorrect program to obtain Relative

Patch Size (RPS), given by: RPS = Dist(ASTs ,ASTf)/Size(ASTs). Where, ASTs and ASTf repre-
sents the Abstract Syntax Tree (AST) of incorrect student program and fixed/repaired program
generated by tool, the Dist function computes a tree-edit-distance between these ASTs, and the
Size function computes the #nodes in the AST.

In our benchmark of 341 incorrect programs, Verifix can successfully repair 199 student pro-
grams, Clara can successfully repair 146 programs, while Verifix and Clara both can successfully
repair 132 common programs. Out of these 132 commonly repaired programs, Verifix generates a
patch with smaller RPS in 67 of the cases, Clara generates a patch with smaller RPS in 47 of the
cases, and both tools generate a patch of the exact same relative patch size in 18 cases. Note that
in the case of Clara, a smaller repair does not necessarily imply better quality repair, since these
repairs can overfit the test cases (see Section 7.5).

Figure 6 plots the Kernel Density Estimate (KDE) of RPS for these 132 common programs
that both Verifix and Clara can successfully repair to visualize the RPS distribution for these large
number of data points. KDE is an estimated Probability Density Function (PDF) of a random
variable, often used as a continuous smooth curve replacement for a discrete histogram. From the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:22 U. Z. Ahmed et al.

Fig. 6. Kernel Density Estimate (KDE) plot of Relative Patch Size (RPS) by Verifix and Clara on 132 common

successful repairs.

Fig. 7. Example from a Lab-5 Prime Number assignment. The main function contains two errors, both of

which are fixed by Verifix, while Clara’s repair overfits given test-suite by ignoring first error.

Figure 6 plot, we observe that the density of patch-sizes (y-axis) produced by Verifix is greater than
that of Clara when RPS < 0.8 (x-axis). However, the density of patch sizes generated by Clara is
greater than that of Verifix when RPS ≥ 0.8. That is, a large proportion of repairs generated by
Verifix have a small relative patch size, since the density concentration of repairs is towards lower
RPS (x-axis). In comparison, a significantly larger proportion of Clara’s repairs have RPS ≥ 0.8, as
compared to Verifix.

7.5 RQ5: Overfitting

Majority of the programming assignment repair tools [13, 16, 33, 34] generate repairs that satisfy
a given test suite (incomplete specification). Verifix is distinguished from these existing test-based
approaches in that it generates a verifiably correct repair. Figure 7 demonstrates an example from
a Lab-5 Prime Number assignment, where Clara’s [13] repair overfits the test cases. With the help
of a reference implementation, Verifix is able to detect a new counter-example where the student
program deviates from correct behavior, when input stream is “1 2” (n1 = 1, n2 = 2). Given this
new unseen test case, the repair suggested by Clara results in an incorrect output “2 2,” while the
repair suggested by Verifix results in the correct behavior producing output “2.”

To measure the degree of overfitting repairs generated by each tool, we compare the impact of
test-case quality on repair accuracy. This is done by running Clara and Verifix on our common
benchmark of 341 incorrect programs under four different settings, where a percentage of test
cases were hidden from tool during repair generation. For each of the 28 unique assignments,
with 6 instructor-designed test cases on average, we randomly sampled X% as “visible” test cases.
Once the repair was successfully generated by a tool on the limited visible test-case sample, we
re-evaluated the repaired program on all test cases, including hidden ones. We carried out this
experiment under four different settings, with a random sampling rate of 25%, 50%, 75%, and 100%
of the available test cases. This entire experiment was repeated five times, where we randomly

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:23

Fig. 8. Repair accuracy of Clara and Verifix on various test-case samplings.

sampled test cases each time, and we report on the distribution of repair accuracy achieved by
each tool.

Figure 8 displays the result of our overfitting experiment, with the X-axis representing the visi-
ble test-case sampling % and Y-axis representing the repair accuracy % obtained by APR tool on the
entire test-suite (visible and hidden test cases). Each box plot displays the distribution of repair ac-
curacy per test-case sampling by showing the minimum, maximum, upper-quartile, lower-quartile,
and median values. The median value of each box-plot is shown as text above the box-plot.

From Figure 8, we observe that Verifix’s repair accuracy is constant. That is, Verifix’s repair does
not change based on the percentage of visible test cases provided, since it does not use the avail-
able test cases for repair generation or evaluation/verification. However, Clara’s repair accuracy
varies from a median value of 42.8% (when all test cases are made visible) to a median value of
32.3% (when only 25% of test cases are made available to Clara). In other words, Clara overfits on
42.8 − 32.3 = 10.5% of our benchmark of 341 incorrect programs, when 25% of test cases are
randomly chosen. Similarly, overfitting of 42.8 − 41.3 = 1.5% is observed when visible test-case
sampling rate is 75%, or 5 visible test cases (�75% × 6� = 5) on average. In other words, when even
a single test case on average is hidden from Clara, its generated repair can overfit the test cases.

Moreover, the choice of test-case sampling has a large effect on Clara’s repair accuracy, as ev-
ident from the variation in box-plot distribution. In the case of 25% visible test-case sampling,
Clara’s repair accuracy ranges from a minimum value of 29.9 to maximum of 32.8, depending on
which two test cases (�25% × 6� = 2) were made available.

Hence, APR tools such as Clara [13], which rely on availability of good quality test cases for their
repair generation and evaluation, can suffer from overfitting, even when the instructor misses out
on a single important test-case coverage during assignment design, thereby generating incom-
plete feedback to students struggling with their incorrect programs. Verifix, however, does not
suffer from overfitting limitation, due to its sole reliance on reference implementation for repair
generation and evaluation/verification.

7.6 RQ6: Repair Success Rate with Multiple Reference Implementations

In the previous sections, we conducted experiments with a single reference implementation for
each assignment. Several previous works, including Clara [13] and SarfGen [33], assume the preva-
lence of multiple reference solutions to help alleviate structural matching issues. In this section,
we compare the repair success rate of both Verifix and our baseline tool Clara [13] on being pro-
vided access to multiple reference solutions. As additional reference implementations, we use

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:24 U. Z. Ahmed et al.

Fig. 9. Repair success rates and structural mismatch rates across different sampling rates of multiple refer-

ence solutions. The X and Y axes represent the sampling rate of the reference solutions and the observed

repair success rate, respectively.

341 student submissions in the ITSP dataset [34] that pass all test cases. While passing all tests
does not guarantee the correctness of a program, previous works [13, 33] used similar approaches.

To evaluate the change in repair success rate on providing access to multiple reference imple-
mentations, we run Verifix and Clara with diverse sampling rates of 0%, 25%, 50%, 75%, and 100%;
for each sampling rate of N%, we randomly sample N% of all available reference implementations,
in addition to the instructor-provided reference program. For example, 0% sampling rate indicates
only the instructor-provided reference solution was used (single-reference program); while 100%
indicates that all reference programs were made available for the repair tool, in addition to the
instructor-provided reference program. To prevent a student’s incorrect program P being repaired
by his/her own final submission P ′ that passes all test cases, we exclude P ′ from the sampled set of

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:25

multi-reference programs (if it exists) when P is being repaired. We run our baseline tool Clara [13]
in its default mode for multi-reference programs; its clustering algorithm is first executed on the set
of sampled reference implementations, followed by running its repair algorithm on each incorrect
program using the obtained clusters.

The results of multi-reference experiments are shown in Figure 9. Figure 9(a) shows how repair
success rate changes as more reference programs are used, while Figure 9(b) shows how struc-
tural mismatch rate changes. A student submission S is considered structurally mismatched with
a sampled group of reference programs G when no program in G structurally matches S . From
Figure 9(a) we observe that the repair success rate increases for both Verifix and Clara, as more
reference implementations are made available for repair. From Figure 9(b) we note that this is pri-
marily due to a reduction in structural alignment mismatch between the set of multiple reference
implementations (with more diverse program structures) and the given incorrect program.8 We
note that similar observations have been made regarding the effect of multi-reference programs
on repair success rate in prior work [16].

From Figure 9(a) we observe that Verifix achieves a higher success rate over Clara across all
sampling rates. The gap between the repair rate of both tools reduces as more reference programs
are provided, indicating that Clara’s repair success rate could eventually match that of Verifix’s
on being provided a large number of reference solutions. From Figure 9(b) we observe that Verifix
maintains a lower structural mismatch rate over Clara across all sampling rates. When all reference
solutions are used, structural mismatch rate of Verifix and Clara drops down to 18.5% and 26.7%, re-
spectively. This result demonstrates the benefit of using Verifix’s CFA (Control-Flow-Automata)

based structural alignment algorithm over Clara’s CFG (Control-Flow-Graph)-based alignment
algorithm, even in the case of multi-reference solutions.

8 USER STUDY

To evaluate the usefulness of the repair generated by Verifix, we conducted a user study of tutors
of introductory programming courses. Note that students have expressed positive feedback about
using feedback generation systems such as Clara [13] and SarfGen [33]. Verifix uses the same copy
mechanism for repair as these tools (i.e., parts of a reference implementation are copied) and can
generate the same style of feedback. The main difference between Verifix and the existing tools lies
in that Verifix generates verifiably correct repairs. We believe that tutors can better appreciate the
quality of repairs than novice students, and our user study sheds helpful light on understanding
its pedagogical value. A user study with students is left as future work.

8.1 User-study Questionnaire

In this user study, we explored the practical value of Verifix in aiding tutors in the task of grading
and providing feedback on incorrect student submissions. This was explored using the following
questions:

(1) Rate the quality of the generated repair (in terms of semantic correctness, size, etc.).
(2) Rate the possibility that you would like to use the repair (either complete or partial) as feed-

back to the student.
(3) Rate the possibility that you would like to use the repair indirectly: to help formulate your

own custom feedback to student.
(4) Rate the possibility that these repairs can help you in grading?

8Repair failures may also occur due to reasons other than structural mismatch, as discussed in Section 7.3.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:26 U. Z. Ahmed et al.

Fig. 10. Boxplot of the responses—with the scales from 1 (very low) to 5 (very high)—collected from 14 tutors.

Red line represents the median value and green triangle represents the mean value. The whiskers denote the

minimum/maximum value, and the rectangle denotes the first/third quartile.

(5) Will examples of student incorrect submissions and repairs like these help you in improving
the grading policy?

(6) If the repair is known to be verifiably (provably) correct, does it give you more confidence
in using it?

8.2 User-study Setup

To answer the above questions, we circulated a Google-Form survey among the tutors of intro-
ductory programming courses at NUS (National University of Singapore) and UNIST (Ulsan

National Institute of Science and Technology), after which, 14 tutors in total volunteered for
this survey and completed their responses. For this survey, we randomly selected 10 incorrect
student submissions from our benchmark of 341 programs, on which Verifix could successfully
generate a repair. For each incorrect student program, the tutors were shown the assignment
title, assignment description, a sample test case, and the differences between a student-written
buggy program and its repair generated by Verifix. All the volunteered tutors were shown the same
10 incorrect student submissions in the same order. One of the incorrect student submissions used
in our user study is shown in Appendix A (see Table 5).

The tutors were asked three questions (questions 1–3 listed in Section 8.1) for each buggy student
submission, followed by three questions (questions 4–6 listed in Section 8.1) as an overall summary
at the end of the user study. The tutors were asked to provide their ratings on a numeric scale from
1 (very low) to 5 (very high) for each question.

8.3 User-study Results

The overall result of the 14 tutor responses is summarized using boxplots in Figure 10. From
Figure 10, we note that the tutors responded with an overall positive rating for all six of our ques-
tions (Q1–Q6), with a mean/median value of >= 3.8 in all the cases. We observe that the tutors rate
the quality of Verifix generated repairs (Q1) highly, with a mean/median rating of ~4.0. Our tool’s
verification capability improved the tutors’ confidence in accepting our generated repairs, with
a mean/median rating of ~4.4. The tutors, on average, found Verifix’s repair useful for providing
feedback to students, both directly (Q2) and indirectly (Q3), giving a mean/median rating between
3.5–4.0. While a larger variation is observed in the case of direct usage of repair as feedback (Q2),
this discrepancy reduces for indirect usage of repair as feedback (Q3), where tutors can quickly
design customized feedback using the generated repair. The tutors agreed on the utility of Verifix’s
repair in grading (Q4) and in improving grading policy (Q5), giving a mean/median rating between
4–4.5.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:27

9 THREATS TO VALIDITY

Our aligned automata setup phase consists of a syntactic procedure to obtain a unique edge and
variable alignment between the reference and student automata. Producing an incorrect alignment
does not affect our soundness or relative completeness guarantees, but can increase the size of a
generated patch. This, however, occurs rarely in practice, as demonstrated by our RQ4 (Section 7.4).

The arithmetic theory of SMT solvers is incomplete for non-linear expressions, which can af-
fect our relative completeness. However, this issue affects 6.7% of our dataset of incorrect student
programs in practice, as demonstrated by our results in Table 4.

Evaluating repair tools using multiple correct student submissions, instead of restricting to a
single instructor reference solution, could help improve the repair success rate. We mitigate this
risk by noting that such an evaluation has been undertaken earlier [16, 33] and would benefit both
Verifix and our baseline tool Clara in terms of reduced structural mismatch rate. Furthermore, we
cannot always assume the availability of a large number of reference solutions, in general.

10 RELATED WORK

10.1 General Purpose Program Repair

Automated Program Repair (APR) [11, 23] is an enabling technology that allows for the auto-
mated fixing of observable program errors, thereby relieving the burden of the programmers. Gen-
eral purpose APR techniques such as GenProg [19], SemFix [26], Prophet [20], and Angelix [22],
require an incomplete correctness specification typically in the form of a test-suite. These tech-
niques achieve low repair success rate on student programs that suffer from multiple mistakes,
since they can scale to large programs but not necessarily to large repair search spaces [34]. As
student programs are substantially incorrect, the search space of repairs is typically large.

ITSP [34] reports positive results on deploying general APR tools for grading purpose by ex-
pert programmers, and negative result when used by novice programmers for feedback. Their low
repair success rate and reliance on test cases (overfitting) can be seen as a motivator for our work.

S3 [18] synthesizes a program using a generic grammar and user-defined test cases. Semgraft
[21] uses simultaneous symbolic execution on a buggy program and a reference program to find a
repair, which makes the two programs equivalent for a group of test inputs; this class of test inputs
is captured by a user-provided input condition. Our work shifts away from test inputs and instead
constructs verification-guided repair. Furthermore, for our application domain of pedagogy, we
seek to build minimal repairs by retaining as much of the buggy program as possible.

10.2 Repair of Programming Assignments

Autograder [30] is one of the early approaches in this domain. In Autograder, the correctness of
generated patches are verified only in bounded domains (e.g., the size of a list in the program is
bounded to a constant number), and thus the verification result is generally unsound. Autograder
also requires instructors to manually provide an error model that specifies common correction
patterns of student mistakes, which is not needed in Verifix.

Clara [13], too, performs bounded unsound verification. Clara checks whether each concrete ex-
ecution trace of the student program matches that of the reference program and performs a repair
on mismatch. Since a concrete execution trace is obtained from test execution, the correctness of
a generated patch cannot be guaranteed. We have provided a detailed experimental comparison
with Clara. Clara assumes the availability of multiple correct student submissions with matching
control-flow to the incorrect submissions, limiting their applicability, unlike Verifix. Sarfgen [33]
generates patches based on a lightweight syntax-based approach and assumes the availability of

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:28 U. Z. Ahmed et al.

previous student submissions. Both Clara and SarfGen require strict Control-Flow Graph (CFG)

similarity between the student and reference program. In comparison, Verifix requires matching
function and loop structure between student and reference program. Unlike Clara and SarfGen,
Verifix can recover from differences in return/break/continue edge transitions due to its usage of
Control-Flow Automata (CFA)-based abstraction.

Refactory [16] handles the CFG differences by mutating the CFG of the student program to that
of the reference program by using a limited set of semantics-preserving refactoring rules, designed
manually; for example, refactoring a while-loop by replacing it with a for-loop structure. Note that
Verifix, unlike Refactory, keeps the original CFG of the student program as much as possible, as
shown in Figure 1. Our goal is to produce small feedback of high quality. We cannot experimentally
compare with Refactory, since its implementation targets Python programming assignments.

CoderAssist [17], to the best of our knowledge, is the only APR approach that can generate
verified feedback. CoderAssist clusters submissions based on their solution strategy followed by
manual identification (or creation) of correct reference solutions in each cluster. After the clus-
tering phase, CoderAssist undertakes repair at the contract granularity rather than expression
granularity—that is, while CoderAssist can suggest which pre-/post-condition should be met for
a code block, CoderAssist does not have the capacity to suggest a concrete expression-level patch.
CoderAssist repair algorithm and evaluation results focus on dynamic programming assignments.
In contrast, Verifix is designed and evaluated as a general-purpose APR.

There have been several attempts to use neural networks [1, 5, 6, 14, 27, 32] for program repair.
These approaches typically target syntactic/compilation errors, and the repair rate for semantic/-
logical errors is low [27]. Such machine learning-based techniques do not offer any relative com-
pleteness guarantees, and the repair is evaluated against incomplete specification (e.g., tests).

There has been prior work on live deployment of APR tools for repairing student pro-
grams [2, 34]. The work of ITSP [34] shows negative results on providing semantic repair feedback
to students on their programs. At the same time, the work of Tracer [2] demonstrates positive re-
sults for repair-based feedback, albeit on simpler (compilation) errors. In this work, we present
an approach for repairing complex logical errors in student programs. Our tool Verifix can gen-
erate verified feedback for 58.4% of incorrect student submissions from 28 diverse assignments,
collected from an actual CS-1 course offering. The human acceptability of our verified feedback
can be further investigated via future user studies.

10.3 Program Equivalence Verification

Verifix performs program equivalence verification that itself is a separate long-standing research
area [4, 7, 25, 36]. In program equivalence verification, it is proved whether given two programs
are semantically equivalent to each other. Program equivalence verification is usually performed
by first constructing a product program (similar to our aligned CFA) where the loops of the two
programs are aligned with each other [4, 36]. Aligning loops is considered as one of the major
challenges in program equivalence verification [7]. In the traditional application areas of program
equivalence verification such as optimized-code verification [8, 25], the original code and its op-
timized code often have different program structures, and thus alignment is challenging in those
programs. This problem is much less severe in introductory programming assignments, as shown
in our experiments, where Verifix fails to obtain a repair due to structural mismatch between the
student and reference program in 27.2% of our dataset. The main difference of our work from
program equivalence verification is that we add a CEGIS (counter-example-guided inductive

synthesis) loop inside the verification procedure, so repair and verification can take place hand-
in-hand.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:29

11 DISCUSSION

In this article, we have presented an approach and tool Verifix for providing verified repair as
feedback to students undertaking introductory programming assignments. The verified repair is
generated via relational analysis of the student program and a reference program. Verifix is able
to achieve better repair success rate than existing approaches on our common benchmark. The
repairs produced by Verifix are of better quality than state-of-the-art techniques like Clara [13],
since they are often smaller in size, while being verifiably equivalent to the instructor provided
reference implementation.

We feel that technologies like Verifix have a place in intelligent tutoring systems of the future.
Specifically, they may be used to give feedback to struggling students learning programming. Since
Verifix generates verifiably correct repairs, it can used first for generating feedback. If Verifix is
able to generate a feedback, then it can be used with confidence. For the cases where Verifix is
unable to generate a feedback, other heuristic-based student feedback generation approaches may
then be used. We envision such a workflow for future intelligent tutoring systems for teaching
programming.

A APPENDIX

Table 5. Example of Questions We Present in the User Study

Assignment 7: Write a program to print pattern 1

Description: Given an integer N(N > 0) as input, your program should output the following pattern.

Input: 5

Output: 5432*\n 543*1\n 54*21\n 5*321\n *4321

Student buggy submission Repaired program

1 i n t main () {

2 i n t a , n , N , i , j ;

3 s c a n f ("%d " ,&N) ;

4 for (j = 1 ; j <=N ; j = j + 1) {

5 for (i =1;i<=N ; i = i + 1) {

6 i f (i +j==6)

7 p r i n t f (" ∗ ") ;

8 e l s e {

9 a=N+1-i;

10 p r i n t f ("%d " , a) ;

11 }

12 }

13 p r i n t f (" \ n ") ;

14 }

15 return 0 ;

16 }

1 i n t main () {

2 i n t a , n , N , i , j ;

3 s c a n f ("%d " ,&N) ;

4 for (j = 1 ; j <=N ; j = j + 1) {

5 for (i =N;i>=1 ; i = i - 1) {

6 i f (i ==j)

7 p r i n t f (" ∗ ") ;

8 e l s e {

9

10 p r i n t f ("%d " , a) ;

11 }

12 }

13 p r i n t f (" \ n ") ;

14 }

15 return 0 ;

16 }
Question 1: Rate the quality of the generated repair (in terms of semantic correctness, size, etc.).

Question 2: Rate the possibility that you would like to use the repair (either complete or partial) as feedback

to the student.

Question 3: Rate the possibility that you would like to use the repair indirectly: to help formulate your

own custom feedback to student.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

74:30 U. Z. Ahmed et al.

REFERENCES

[1] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani. 2018. Compilation error

repair: For the student programs, from the student programs. In Proceedings of the 40th International Conference on

Software Engineering: Software Engineering Education and Training. 78–87.

[2] Umair Z. Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare. 2020. Characterizing the pedagogical

benefits of adaptive feedback for compilation errors by novice programmers. In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering: Software Engineering Education and Training (ICSE). 139–150.

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Proceedings

of the International Conference on Formal Methods in Computer-Aided Design (FMCAD). 1–17.

[4] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational verification using product programs. In Pro-

ceedings of the International Symposium on Formal Methods. Springer, 200–214.

[5] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program corrector for introductory pro-

gramming assignments. In Proceedings of the IEEE/ACM 40th International Conference on Software Engineering (ICSE).

IEEE, 60–70.

[6] Darshak Chhatbar, Umair Z. Ahmed, and Purushottam Kar. 2020. MACER: A modular framework for accelerated

compilation error repair. In Proceedings of the International Conference on Artificial Intelligence in Education. Springer,

106–117.

[7] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence

checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). 1027–1040.

[8] Berkeley Churchill, Rahul Sharma, J. F. Bastien, and Alex Aiken. 2017. Sound loop superoptimization for Google

native client. ACM SIGPLAN Not. 52, 4 (2017), 313–326.

[9] Stephen A. Cook. 1978. Soundness and completeness of an axiom system for program verification. SIAM J. Comput.

7, 1 (1978), 70–90.

[10] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, Xuan Tung Vu, et al. 2018. Wrapping computer algebra is surpris-

ingly successful for non-linear SMT. In Proceedings of the 3rd International Workshop on Satisfiability Checking and

Symbolic Computation (SC-square).

[11] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12

(2019).

[12] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2014. Feedback generation for performance problems in introduc-

tory programming assignments. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. 41–51.

[13] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated clustering and program repair for introductory

programming assignments. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI). 465–480.

[14] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix: Fixing common C language errors by

deep learning. In Proceedings of the Conference on Artificial Intelligence (AAAI). 1345–1351.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. 2002. Lazy abstraction. In Proceedings of the ACM SIGPLAN

SIGACT Symposium on Principles of Programming Languages (POPL).

[16] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoudhury. 2019. Re-factoring based pro-

gram repair applied to programming assignments. In Proceedings of the 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 388–398.

[17] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016. Semi-supervised verified feedback

generation. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE). 739–750.

[18] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: Syntax- and semantic-

guided repair synthesis via programming by examples. In Proceedings of the 11th Joint Meeting on Foundations of

Software Engineering (FSE). 593–604.

[19] C. Le Goues, Thanh Vu Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A generic method for automatic software

repair. IEEE Trans. Softw. Eng. 38, 1 (Jan. 2012), 54–72.

[20] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 298–312.

[21] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2018. Semantic pro-

gram repair using a reference implementation. In Proceedings of the 40th International Conference on Software Engi-

neering (ICSE).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

Verifix: Verified Repair of Programming Assignments 74:31

[22] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable multiline program patch synthesis

via symbolic analysis. In Proceedings of the 38th International Conference on Software Engineering (ICSE). 691–701.

[23] Martin Monperrus. 2018. Automatic software repair: A bibliography. Comput. Surv. 51, 1 (2018).

[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems. 337–340.

[25] George C. Necula. 2000. Translation validation for an optimizing compiler. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation. 83–94.

[26] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. SemFix: Program repair

via semantic analysis. In Proceedings of the 35th International Conference on Software Engineering (ICSE). 772–781.

[27] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. 2016. sk_p : A neural program corrector

for MOOCs. In Proceedings of the ACM SIGPLAN International Conference on Systems, Programming, Languages and

Applications: Software for Humanity. 39–40.

[28] Z. Qi, F. Long, S. Achour, and M. Rinard. 2015. An analysis of patch plausibility and correctness for generate-and-

validate patch generation systems. In Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA).

[29] Tyler J. Ryan, Gene M. Alarcon, Charles Walter, Rose Gamble, Sarah A. Jessup, August Capiola, and Marc D. Pfahler.

2019. Trust in automated software repair. In Proceedings of the International Conference on Human-Computer Interac-

tion. Springer, 452–470.

[30] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for introductory

programming assignments. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI). 15–26.

[31] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial sketch-

ing for finite programs. In Proceedings of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems. 404–415.

[32] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic neural program embedding for program repair. arXiv

preprint arXiv:1711.07163 (2017).

[33] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair: Data-driven feedback generation for

introductory programming exercises. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI). 481–495.

[34] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roychoudhury. 2017. A feasibility study of

using automated program repair for introductory programming assignments. In Proceedings of the 11th Joint Meeting

on Foundations of Software Engineering (FSE). 740–751.

[35] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Böhme, and Abhik Roychoudhury. 2018. A correlation study

between automated program repair and test-suite metrics. Empir. Softw. Eng. 23, 5 (2018), 2948–2979.

[36] Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler validation by program analysis of the cross-product. In Proceed-

ings of the International Symposium on Formal Methods. Springer, 35–51.

[37] Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing distance between trees and related

problems. SIAM J. Comput. 18, 6 (1989), 1245–1262.

Received July 2021; revised November 2021; accepted December 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 74. Publication date: July 2022.

