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Inverse design of nonequilibrium steady states: A large-deviation approach
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The design of small scale nonequilibrium steady states (NESS) is a challenging, open ended question.
While similar equilibrium problems are tractable using standard thermodynamics, a generalized description
for nonequilibrium systems is lacking, making the design problem particularly difficult. Here we show we
can exploit the large-deviation behavior of a Brownian particle and design a variety of geometrically complex
steady-state density distributions and flux field flows. We achieve this design target from direct knowledge of the
joint large-deviation functional for the empirical density and flow, and a “relaxation” algorithm on the desired
target states via adjustable force field parameters. We validate the method by replicating analytical results, and
demonstrate its capacity to yield complex prescribed targets, such as rose-curve or polygonal shapes on the plane.
We consider this dynamical fluctuation approach a first step towards the design of more complex NESS where
general frameworks are otherwise still lacking.
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I. INTRODUCTION

The ability to create and design a system to a desirable
goal stands as the culmination of deliberate human control and
precise, applied knowledge. While this level of achievement
is generally possible at comparative macroscales where bulk
properties dominate, similar control is lacking for systems be-
low the microscale where fluctuations, thermal or otherwise,
is significant. Notwithstanding, the obvious appreciation of
biological complexity and its myriad of small-scale solutions
to practical problems [1,2], for instance, suggests the design
barrier is not insurmountable. Indeed, design problems in-
volving small systems have been an active topic of research
in soft or condensed materials [3–5], motivated by the rising
synthetic and technological prowess at this scale [6–9].

Broadly, one can envision the design problem as a generic
optimization goal where one seeks to fulfill an objective
subject to constraints that reflect the desired state of a sys-
tem. Solution follows through standard numerical optimizers
where possible. Such formulations can also be heuristic
[10,11], or inferential, e.g., learning algorithms [12–14], and
are practical in a variety of systems insofar as they can yield an
answer [15–17]. However, in framing the design problem, it is
desirable to maintain a clear physical picture so as to better
understand the nature of the solution and its optimization
process. For instance, in the equilibrium case, one usually
seeks to minimize a free energy of a system, for example by
modifying the underlying interactions [18,19]. Indeed, such
an approach can be applied successfully to the design of a
variety of self-assembling phases [20–23].

Extending a similar approach to the problem of design
of nonequilibrium systems at the small scale is a critical
yet mostly unaddressed issue. While a fundamental frame-
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work akin equilibrium thermodynamics remains elusive, some
general statements at the dynamical fluctuations level such as
fluctuation theorems are known [24–28] and experimentally
demonstrated [29–31]. In particular, to make a nonequilibrium
problem more tractable, one generally restricts attention to
steady states, which are time invariant and therefore amenable
to averaging. Critically, what distinguishes a nonequilibrium
steady state (NESS) from an equilibrium one is the presence
of nonvanishing fluxes. Therefore, in addition to the usual
probability measure of a system’s configuration, a viable sta-
tistical description must also account for the system’s fluxes.

In this regard, the theory of large deviations can fill the gap
and provide a window into a NESS system from a dynamical
level. Chiefly, the large-deviations framework concerns the
deviation of a quantity from its most likely expectation in the
limit of infinite sampling. Specifically, a stochastic quantity
x fulfills a large-deviation principle if its probability mea-
sure scales as P(x) ≈ exp[−nI (x)] in the large-sample limit,1

where n is the number of samples, and I (x) is a so-called rate
function [32,33]. The most likely value of x is therefore the
minimum of the rate function.

Importantly, rate functions provide a compact statistical
representation of a general stochastic process, where infor-
mation about the average and variances is readily available.
Indeed, large-deviation principles are applicable for equilib-
rium systems in the large-particle limit where rate functions
enter in the form of ensemble-specific expressions. For in-
stance, in the canonical ensemble the rate function takes the
role of a free energy, and the equilibrium state is recovered as
a constrained minimum of this rate function (the most likely
state) [34]. Thus, knowledge of a rate function can provide
a practical statistical description of a system’s asymptotic

1Formally, the limit of − 1
n ln[P(x)] as n → ∞ defines I (x).
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behavior without the detailed tracking of a complex dynam-
ics. For a rigorous definition of rate functions and technical
treatment of large deviations, we refer to existing literature
[35–37].

Here we concern ourselves with a NESS dynamics for
which a large-deviation principle exists, such that informa-
tion about its configurations and flux is available via a rate
function. In particular, we consider the paradigmatic case of
a colloidal particle in a viscous bath whose dynamics can be
modeled through an overdamped Langevin equation:

ẋ = χ f (x) + (2χβ )−1/2ξ(t ), (1)

where ẋ is the velocity vector of a particle, x its position, f (x)
are forces, χ is the mobility, β = 1/kBT is the inverse bath
temperature (kB set to unity hereafter), and ξ is a standard
white-noise term. Non-equilibrium is achieved by means of
nonconservative forces applied on the particle.

For these type of Markovian diffusion systems, the fluctu-
ations can be captured as a joint probability of configurations
and fluxes [38,39], in the form of a rate functional:

I[ρ, j] = β

4

∫
dx ρ(x)

[
j(x)

ρ(x)
− jρ (x)

ρ(x)

]2

, (2)

where jρ (x) is given by

jρ (x)

ρ(x)
= jst (x)

pst (x)
− 1

β
∇ ln

ρ(x)

pst (x)
. (3)

In Eqs. (2) and (3), pst is the most probable steady-state
occupation probability, and the function ρ(x) is an empirical
density of spatial configurations defined as the time average
over a trajectory x(t ) during time period T as

ρ(y; x) = 1

T

∫ T

0
dt δ(y − x). (4)

Similarly, jst (x) is the steady-state flux and j(x) represents the
empirical flux or current defined as

j(y; x) = 1

T

∫ T

0
dt ẋ(t )δ(y − x), (5)

where the integral is taken in the Stratonovich sense. In short,
these empirical measures are finite-time averages of the sys-
tem, where the true densities are achieved in the long-time
limit. Altogether, the rate functional I in Eq. (2) reflects the
most relevant information on the expected steady-state sys-
tem, in terms of its configuration density and flux.

In this work, we exploit knowledge of the Brownian parti-
cle’s rate functional, and show we can leverage the dynamical
fluctuations to design nonequilibrium steady states. Specifi-
cally, we imagine a target state as a far-off fluctuation that,
through adjustment of appropriate force field parameters θ,
“relaxes” as the most probable steady state, i.e., minimizes the
rate function. We carry out this parameter update directly from
a Brownian simulation, given a prescribed form of the config-
uration and flux configuration that represents a steady-state
target. We remark that this approach differs from numerous
force field fitting studies of Brownian systems, where the goal
is to replicate known trajectories or experimental data, and are
usually done at a statistical inference level [40–45]. Instead,
here we focus on creating arbitrary NESS in the form of

specific configuration probabilities and fluxes, which we do
through direct knowledge of the system’s dynamic behavior.
As we will elaborate below, this method can recover known
analytical answers and help directly realize nontrivial steady
states.

The rest of the paper is structured as follows. We elaborate
on the mathematical and simulation details of our method in
Sec. II. In Sec. III we first validate our method against a simple
analytical scenario. We then show we can realize various
prescribed NESS featuring complex occupation probabilities
and fluxes in the shape of rose-curve and polygon motifs.
We also offer some thoughts on a physical interpretation of
the method. We end with some conclusions and offer some
possible future directions in Sec. IV.

II. METHODS

A. General design approach

We approach the nonequilibrium steady-state design prob-
lem from a fluctuation dynamics point of view, using the rate
functional in Eq. (2). We envision the steady-state target as a
far-off fluctuation that is “relaxed” via adjustments of a force
field parameters θ so as to become the most probable steady
state, i.e., ρ(x) = pst (x) and j(x) = jst (x). This requires that
the rate function be minimized relative to parameters such that
∇θI = 0 and therefore I = 0. We demonstrate this goal can
be achieved via an iterative gradient descent method on the
parameters by minimization of the rate functional as follows.

First we rewrite the rate functional in Eq. (2), using Eq. (3),
as

I[ρ, j] = β

4

∫
dxρ(x)

[
1

β
∇ ln

ρ(x)

pst (x)

]2

+ β

4

∫
dxρ(x)

[
j(x)

ρ(x)
− jst (x)

pst (x)

]2

≡ IA[ρ] + IB[ρ, j], (6)

where IA depends on probability ρ(x) alone and IB contains
the flux field dependent terms. We identify the fluctua-
tions j(x) and ρ(x) as prescribing the target state, and let
pst (x|θ) and jst (x|θ) be intermediate steady states controlled
through θ.

We can now update parameters θ via a standard iterative
gradient descent procedure as

θi+1 = θi − αA∇θi IA(θi ) − αB∇θi IB(θi ), (7)

where θi indicates vector of parameters at iteration i, and
αA and αB are the respective gradient update step sizes. The
parameter gradients themselves can be evaluated as

∇θi IA(θi )

= − 1

2β

∫
dx ρ(x)

[
∇ ln

ρ(x)

pst (x|θi )

]
· ∇θi∇ ln pst (x|θi ) (8)

and

∇θi IB(θi )

= β

2

∫
dx ρ(x)

[
j(x)

ρ(x)
− jst (x|θi )

pst (x|θi )

]
· ∇θi

(
jst (x|θi )

pst (x|θi )

)
. (9)
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FIG. 1. (a) Test case: a particle in a harmonic potential with a driven angular field whose respective strengths are controlled by parameters
θi [Eq. (14)]. Analytic solution is given by a Gaussian probability and an angular flux [Eq. (15)]. (b) Progression of the parameters along
the iterative gradient descent procedure, for targets defined as the steady-state solution of Eq. (14) with β = 2, θ

tgt
1 = 0.5, θ

tgt
2 = 2, where

parameters θi are randomly initiated. Solution is achieved when θi/θ
tgt
i = 1, corresponding to dI ≡ ∇θIA/B → 0 (inset).

The effective steady-state velocity jst (x|θi )/pst (x|θi ) in Eq. (9)
can be computed from the Fokker-Planck expression jst/pst =
f − β−1∇ ln pst as

∇θi

(
jst (x|θi )

pst (x|θi )

)
= ∇θi f (x|θi ) − β−1∇θi ln pst (x|θi ). (10)

Each of the integrals in Eqs. (8) and (9) can be evaluated with
knowledge of the fixed target states [ρ(x), j(x)], adjustable
force field f (θi ), and intermediate steady states pi

st, the latter
which are found directly from a Brownian simulation.

The optimization procedure is then carried out in the fol-
lowing fashion: (A) given an initial guess of the force field
f (θi ) compute pi

st from a Brownian simulation; (B) Use pi
st to

evaluate gradients in Eqs. (8) and (9); (C) update parameters
as per Eq. (7); (D) repeat iteration using updated f (θi+1). The
optimization then completes when gradients converge to zero.

As a model of an adjustable force field f (parameters left
implicit), we consider

f = fh + fan + fo + fs, (11)

where fh is a confining harmonic force, fan is a driven angular
force, fo is an isotropic repulsive term at the origin, and fs are a
series of variable sinusoidal terms. Thus, the system can be in-
terpreted as a confined particle subject to complex sinusoidal
forces which constrain it to a specific occupation shape and
flow. For further details on model implementation, Brownian
simulation, force field choices and parameter solutions, see
the Supplemental Material [46].

B. Design targets

Having defined the design strategy, we now consider
concrete design targets that highlight the efficacy of the pro-
cedure. To this end, we consider a two-dimensional colloidal
particle such that its average occupation and flow trace a
specific figure motif on the plane. As a first example, we

consider a family of “rose” curves resembling flower petals:

rc(φ) = r0[1 − a cos(kφ)], (12)

where rc is the radial coordinate, φ is the polar angle, r0 is the
size of the petals, k is the number of petals, and a ∈ (0, 1]
controls petal sharpness. An illustration is provided in the
inset of Fig. 2(a) below. Target probability density is then
defined as a normalized Gaussian-like function,

ptgt (r, φ) = 1

N
exp

[
− [r − rc(φ)]2

2σ 2

]
, (13)

where N is the normalization factor, and rc is defined by the
rose curve in Eq. (12).

Defining a target flux field jtgt is somewhat more chal-
lenging since, by definition, ∇ · jtgt = 0. Thus, creating a
vanishing divergence is nontrivial, and instead we approxi-
mate the flux field as a flow tangential to the chosen motif
figure.2 As we will see, this procedure ensures that the pre-

2Of course, exact knowledge of both the density and flux field
would define the force field through the Fokker-Planck expression
for the flux. However, in such a case, the method’s purpose would
still lie in finding a simpler, closed-form force model from otherwise
fully prescriptive targets.

TABLE I. Design target construction parameters. For the rose-
motif target, these correspond to k, the number of petals, and a, the
petal sharpness. For all roses, r0 = 1.25 is the petal size and σ 2 = 0.5
is the variance of the Gaussian-like function. For polygons, l is the
side-length size for the respective equilateral polygon centered at the
origin, and σ 2 is the variance of the brush Gaussian profile (see text).

Roses Polygons

1 k = 3; a = 0.4 hexagon; l = 1.25, σ 2 = 0.30
2 k = 4; a = 0.4 square; l = 1, σ 2 = 0.25
3 k = 12; a = 0.3 triangle; l = 1.20, σ 2 = 0.45

022101-3



WILLIAM D. PIÑEROS AND TSVI TLUSTY PHYSICAL REVIEW E 103, 022101 (2021)

FIG. 2. Representative example of a rose-curve target steady state (k = 4). (a) Target probability density ρ(x, y) and flux field (red arrows).
(b) Realized target probability density and flux. Small inset is the parametric rose-curve plot [Eq. (12)] with r0 = 1.25, k = 4, and a = 0.4.
(c),(d) Perspective views of (a) and (b) respectively. (e) Divergence of the flux ∇ · j for the input target and the realized result in (f). While the
input is divergent, the realized result from a simulation obtains a valid flux field by default. Nonzero values in (f) are a finite grid size artifact.

scribed flux field remains plausible as a realizable target. Final
chosen target parameters are shown in Table I.

Additionally, we consider a second family of more chal-
lenging design targets in the form of polygonal motifs. The
probability ptgt (r, φ) is now piecewise continuous and drawn
as a polygon brush whose size is scaled linearly along the
plane, and its paint intensity is determined by an angular
symmetric Gaussian profile exp [−(s − s0)2/2σ 2], where s is
the scaling and s0 = 1. As in the rose-curve case, the flux field
is chosen as a uniform flow tangent to the polygon shape.
Chosen polygonal targets are equilateral triangle, square, and
hexagon with parameters as shown in Table I.

III. RESULTS AND DISCUSSION

We begin by proof testing the method outlined in Sec. II. To
this end, we consider the simple analytical case of a particle
confined by a radial harmonic potential and driven by an
angular force along the plane. The force field is

f = −θ1r r̂ + θ2r φ̂, (14)

where the first term is a harmonic force with confining con-
stant strength θ1, and the second is an angular force with
driving magnitude θ2. The analytical steady-state solution of
this system is known [38] [Fig. 1(a)]:

pst (r) = βθ1

2π
exp

[
−βθ1

2
r2

]
, jst (r) = pst (r)θ2r φ̂,

(15)

where β is the inverse bath temperature. Thus, given a chosen
set of θtgt = {θ tgt

1 , θ
tgt
2 }, we know the resulting steady-state

density pst and jst which we can set as test design targets.
Then, using the model force with tunable parameters θ =
{θ1, θ2} in Eq. (14), we can check if the method we pro-
pose finds the prescribed θtgt values. The results of this test
are shown in Fig. 1(b), where the adjustable θi are initiated
randomly and their convergence progress is monitored as a
function of iteration number. As seen, the ratio of θi/θ

tgt
i

converges to unity past around 300 iterations, indicating suc-
cessful parameter solution. This convergence corresponds to
the vanishing of the rate functional gradients, dI ≡ ∇θIA/B

(inset) indicating rate function minimization.
Next, we move on to consider more complex steady-state

design targets. To this end, we first start with the rose-motif set
of targets which, as elaborated in Sec. II B, represent particle
confinement and flow constrained to trace out a flowerlike pat-
tern along the plane. As a representative case, we consider the
four-petal rose curve (k = 4) whose respective target pst and
jst as are illustrated in contour projection [Fig. 2(a)] and relief
representation [Fig. 2(c)]. As seen in the second figure row in
(b) and (d), our method successfully replicates the prescribed
probability and flux field density with excellent agreement.
Importantly, while the input target field is not entirely valid
as seen by the nonzero divergence [Fig. 2(e)], the realized
field not only approximates the desired design flow, it also
fully realizable, i.e., divergence-free [Fig. 2(f)]. This follows
directly from the simulation component of the method, where
parameters can only be adjusted with knowledge of the in-
termediate state probability and flux field densities. Thus, the
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FIG. 3. Sample probability ρ(x, y) and flux field targets (red ar-
rows) using the rose-curve motif for (a) k = 3 and (b) k = 12. (c) and
(d) are the respective realized solutions using our method.

difficulty of creating divergenceless flux fields as a design
target can be averted by ensuring the target flux field is simply
plausible within the motif constraint.

In Fig. 3, we show two additional examples of designed
rose-motif targets for an odd number of petals k = 3 in (a),
and a more complex rose pattern with k = 12 in (b). As seen
in (c) and (d), both targets are successfully designed with both
flux fields conforming to the imposed motif. Notably, in the
case of k = 12, the target displays rapidly changing flux fields
with tight changes around every petal turn. Despite this, the
generated flux field nicely conforms to figure and naturally
smooths out the more jarring, and unrealizable, kinks in the
original input target.

Next, we consider more challenging motifs tracing
polygon-shaped densities and field fluxes. Unlike the smooth
rose-motif targets, here piecewise continuous, rectilinear
edges are imposed on the steady-state targets. Due to the
singularities, one expects such hard-cut densities and flows
to be only asymptotically realizable. Yet, assuming a suffi-
ciently flexible force field is provided, we expect the method
to find the best approximate realization. Indeed, as seen in
Fig. 4, probability densities and flux fields displaying (a)
hexagonal, (b) triangular, and (c) square motifs are realized.
Notably, the difficulty in achieving such targets is observed in
the solutions (d)–(f), where the hard-edged corners become
rounded, and the rectilinear flows along the edges exhibit
small deviations along the tracks. The triangle motif proved
particularly difficult to solve, requiring larger sampling times,
double phase terms, and additional sinusoidal angular driven
terms. The difficulty is mostly due to the acute angles that
impose stronger singularity and deviation from smoothness,
as well as the reflection asymmetry along the x axis.

We end with the following tentative thoughts and observa-
tions. While our method works well for the design of visually

FIG. 4. Piecewise continuous targets with polygonal motifs in position probability density ρ(x, y) and flux fields (red arrows). (a)–(c) Input
targets for hexagon, triangle, and square polygon motifs, respectively. (d)–(f) Realized probability density ρ(x, y) and flux fields (red arrows).
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appealing steady states, its practicality is limited to the explicit
knowledge of a rate function of the relevant dynamics, such
as interactionless Brownian particles. Extending this approach
to the more interesting case of interparticle interactions rele-
gates the problem to the establishment of an appropriate rate
function which can be challenging outside of system approxi-
mations like mean-field interactions [36,47]. What is notable,
however, is that it is indeed possible to (1) conceive a desirable
target state as a dynamical fluctuation and (2) realize it as the
most likely steady state following an appropriate parameter
“relaxation.”

This fluctuation-relaxation picture is, perhaps, not entirely
surprising given its central role in the fluctuation-response
theory for near-equilibrium processes, where the most likely
relaxation pathway following a perturbation also corresponds
to an equivalent spontaneous fluctuation pathway of the sys-
tem [48,49]. In fact, it recently came to our attention that
the rate function itself can be estimated tightly with a map-
ping of optimal target states through a variational procedure,
consistent with a reciprocal picture [50]. Furthermore, this re-
lationship between relaxation and fluctuation has been shown
to hold for NESS Markovian processes in the hydrodynamic
limit, supposing a corresponding large-deviation principle ex-
ists [51–53]. Indeed, the term IA(ρ) in the rate function Eq. (2)
can be identified as a nonadiabatic entropy production term
vanishing upon relaxation to the steady state [54,55]. Like-
wise, the rate functional can be related to an entropy flux
and a quantity termed “traffic” (which is a form of dynamical
activity), both of which play a central role in the fluctuation-
response theory for nonequilibrium diffusive systems [56,57].
Tentatively, from a NESS design point of view, all these ob-
servations suggest that a fluctuation level approach might be
generally useful beyond exact knowledge of the correspond-
ing dynamical rate function.

IV. CONCLUSION

In this work, we leveraged dynamical fluctuations in an
overdamped Brownian system to design a variety of nontrivial
nonequilibrium steady states (NESS). In particular, we envi-
sioned the target state as a far-off fluctuation that is “relaxed”
to a desirable steady state by minimizing the known rate
functional with respect to an adjustable force field parame-
ters θ. We demonstrated that such an approach successfully
replicates the analytic solution of a particle in a harmonic
potential driven by an angular field, and applied it to the
design of nontrivial steady states in the form of prescribed
occupation probabilities and steady-state fluxes tracing rose-
curve and polygon motifs. We showed all targets could be
successfully achieved, including the polygon motifs which
were expected to be more difficult due to the presence of
sharp turns and hard-edge linear flow. Furthermore, satisfac-
tory solution could be achieved even if the prescribed flux
field was strictly unrealizable though still plausible for the
motif constraint. Altogether, our method demonstrates that a
dynamic fluctuation point of view provides a feasible entry
into NESS design, though much work is needed in extending
it to useful scenarios such as interacting particle ensembles.
For future studies, it will be interesting to understand how
this design view may tie into more general frameworks of
nonequilibrium fluctuation response or established entropy
production relations.
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